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16 Abstract
Structural evaluation can be very useful at the network level for project prioritization purposes. In the project priority

ranking procedure of the Kansas Department of Transportation (KDOT), a pavement rating attribute, Pavement Structural
Evaluation (PSE), is used. These ratings are subjective and based on the condition of the pavement as indicated by the visual
distresses and maintenance histories and the ability of the section to provide an adequate surface for the prevailing traffic. PSE is
expected to be an indicator of the structural deficiency of the pavement sections. However, since KDOT does not collect any
deflection data at the network level, the PSE computation process does not directly take into account any structural evaluation.
This study outlines an approach based on the classical multiple regression analysis resulting in a better estimation of the PSE
values using the results from the Falling Weight Deflectometer (FWD) tests and network-level distress survey.

The regression models proposed in this study predict the decrease in PSE values by taking into account the FWD data,
age, thickness, and distress levels of pavements, and very closely approximate the current PSE ratings obtained at the district
level. FWD data on approximately 20% of the KDOT network is needed for network level structural evaluation. This translates
into 750 lane-miles of FWD testing per year. Three FWD tests per mile are recommended for the network-level evaluation. This
testing would also be necessary for using/updating the models developed in this study. The decrease in the structural number
values obtained from the models developed in this study was about 33% higher than the KDOT design assumption.

A parallel study at Kansas State University used the Bayesian Regression methodology developed by the Canadian
Strategic Highway Research Program. The Bayesian regression models developed are very similar in form to the classical
regression models and yielded statistically similar results when tested on a different set of pavements. However, the Bayesian
regression models appeared to give slightly better results for some pavements during testing.
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EXECUTIVE SUMMARY
Structural evaluation can be very useful at the network level for project prioritization

purposes. In the project priority ranking procedure of the Kansas Department of Transportation
(KDOT), a pavement rating attribute, Pavement Structural Evaluation (PSE), is used. These
ratings are subjective and based on the condition of the pavement as indicated by the visual
distresses and maintenance histories and the ability of the section to provide an adequate surface
for the prevailing traffic.  PSE is expected to be an indicator of the structural deficiency of the
pavement sections. However,  since KDOT does not collect any deflection data at the network
level, the PSE computation process does not directly take into account any structural evaluation.
This study outlines an approach based on the classical multiple regression analysis resulting in a
better estimation of the PSE values using the results from the Falling Weight Deflectometer
(FWD) tests and network-level distress survey.

The regression models proposed in this study predict the decrease in PSE values by taking
into account the FWD data,  age, thickness,  and distress levels of the pavements, and very closely
approximate the current PSE ratings obtained at the district level. FWD data on approximately
20% of the KDOT network is needed for network level structural evaluation. This translates into
750 lane-miles of FWD testing per year.  Three FWD tests per mile are recommended for the
network-level evaluation. This testing would also be necessary for using/updating the models
developed in this study. The decrease in the structural number values obtained from the models
developed in this study was about 33% higher than the KDOT design assumption.

A parallel study at Kansas State University used the Bayesian Regression methodology
developed by the Canadian Strategic Highway Research Program. The Bayesian regression models
developed are very similar in form to the classical regression models and yielded statistically
similar results when tested on a different set of pavements.  However,  the Bayesian regression
models appeared to give slightly better results for some pavements during testing.
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1.0  INTRODUCTION

1.1 General Problem Statement

Pavement evaluation in pavement management systems (PMS) is generally directed toward

the following objectives (Haas et al. 1994):

1. Selection of projects and treatment strategies at the network level,  and

2. Identification of specific maintenance requirements at the project level.

Each of these objectives requires pavement evaluation information to greater or lesser

degrees of detail. In the case of lesser detail,  aggregation of the individual measures comprising

the information,  such as a composite or combined measure of pavement quality, is widely used.

Such a combined measure for each pavement section is helpful at the network level for technical

decisions, e. g.,  project selection.  

At the network level, Nondestructive Testing (NDT) can be used to identify the beginning

and end of management sections and group pavement sections with similar structural capacities for

condition prediction, and to identify pavement projects for project-level testing and evaluation

(Shahin 1994). Without NDT testing, there is a risk of defining pavement management sections that

may appear uniform based on observed distress alone, but in reality they are not. In Kansas, one type

of pavement management section is known as a “control section.”  A control section is “a segment

of roadway with reasonably uniform geometric, traffic, surface, and base characteristics for its entire

length.” These sections are used for project prioritization purposes by the Kansas Department of

Transportation (KDOT). 

Due to limited resources and large size of the network (17,660 km or 10,971 miles), network-

level structural data collection annually by KDOT at the same intervals (5 to 10 tests per mile) as
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the project level is not realistic. Although guidelines exist for test intervals at the project level

(Karan et al. 1981; Koole 1979; Way et al. 1981; Mamlouk et al. 1990; Hossain and Zaniewski

1992; Shahin 1994), not many studies have been conducted to determine the test intervals at the

network level.  Lytton et al. (1990) evaluated the minimum number of Falling Weight Deflectometer

(FWD) tests required to provide accurate representation of the structural capacity of the pavement

section at the network level. They concluded that a minimum of five tests per mile are required to

provide a ranking of a pavement section which is highly correlated to the actual ranking. The actual

ranking is the one that would be obtained by doing as many tests as possible. KDOT owns two

Dynatest 8000 FWD. Currently, each unit is capable of testing up to 20 lane-miles in a 10-hour day

during a deflection survey period which runs from April thru October.  With this production level,

to test the entire network (17,660 lane km or 10,971 lane miles) annually, 275 days of testing would

be necessary just at the network level! This does not include the time spent in travel from one project

to the other. Thus, one of the objectives of this study was to determine the test sample size (percent

mileage) at the network level as well as the test intervals and frequency. 

In the Priority Ranking Procedure of KDOT, a composite measure of pavement quality,

Pavement Structural Evaluation (PSE), is used. The rating for  pavements is on a scale of 0 to 10,

10 being the best or no work required. In the ranking procedure, PSE is expected to be an indicator

of the control section  structural deficiency (Clark 1989). The attributes and relative weights used

in the prioritization process for the interstate highways are as follows:

Attribute Relative Weight
Commercial Traffic Index 0.140
Rideability 0.189
PSE 0.447
Observed condition 0.224
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Thus the relative weight of the PSE attribute in the interstate roadway priority formula is

twice the next weighted attribute of observed condition. The same importance is attached to the PSE

rating attribute for non-interstate roadways (Comstock 1992).

PSE ratings are furnished by the district offices of KDOT and are based on the condition and

strength of base and surface, as indicated by maintenance costs, subgrade failures, and ability of the

section to provide an adequate surface for the type of expected traffic (Chowdhury 1998). Table 1.1

shows  the rating guide used by the KDOT districts for the bituminous pavements. Since the

implementation of a network-level PMS (known as  Network Optimization System or NOS) by

KDOT in the late eighties, PSE is the only input the Districts have into the project prioritization

process. 

The Geotechnical unit provides a possible range of PSE values for each control section based

on algorithms developed by the experts in that unit using the PMS data. However, these values did

not appear to be helpful to the districts and in some cases, led to confusion. Since KDOT does not

collect any deflection data at the network level, the PSE computation process does not take into

account any structural evaluation. However, some of the distresses considered are structure-related.

Engineering judgment indicates that a better measure of structural evaluation can be developed using

results from the in-situ deflection tests, such as Falling Weight Deflectometer (FWD) tests and

network-level distress survey.
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Table 1.1 PSE Rating Guide for Bituminous Surfaces

PSE
Value

Pavement Condition

10 Nearly new condition.  No maintenance or distress expected for three or more years.
When a recent action produces a current condition that is expected to last less than
three years, consider making the rating in light of the condition before recent action.

8~9 Slight (<1/4") rutting in at least 1 wheelpath; and/or fine alligator cracks; little or no
surface maintenance needed.

6~7 Moderate (½") rutting continuous in 2 or more wheel paths; and/or secondary
transverse cracks or moderate (1/4") transverse cracks with little or no roughness
associated with crack; and/or alligator cracks associated with ruts; and/or minor
shoving, spot edge failures, or hairline block cracks; requires spot patching and
major patching.

4~5 Significant (>½") rutting in wheel paths; and/or wide (>½") transverse cracks with
roughness developing at cracks and/or shoving may be present; and/or alligator
cracks associated with deep ruts, or vertical displacement; and/or edge failures,
and/or spalling associated with block cracks; requires frequent patching and major
patching.

2~3 Very wide (>3/4") or depressed transverse cracks resulting in unacceptable surface
roughness; and/or continual edge failures or shoving along pavement edge at
transverse cracks; and/or block cracking that is <4" in any dimension with spalling
associated with the cracks; requires major patching; high potential for winter or
spring breakup.

0~1 Continual patching and major patching required; or milling required to remove ruts
and/or roughness due to depressed transverse cracks; beyond economical
maintenance by KDOT forces.

1.2 Objective of the Study 
The primary objective of this study was to investigate the potential of FWD deflection data

to augment the Pavement Structural Evaluation (PSE) value computation. Another objective was to

determine the FWD test sample size (percent mileage) at the network level, and test intervals and

frequency needed to provide input into the network-level structural evaluation and PSE computation

process. 
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1.3  Approach of the Study 

 The following variables, which directly or indirectly influence the pavement structural

condition, were investigated as potential predictors of the PSE values:

1. Age of the pavement (in years) since the last rehabilitation action,
2. Cumulative 18 kip Equivalent Single Axle Loads (ESAL’s) that have passed over the

section since the last action,
3. Asphalt Concrete (AC) layer thickness,
4. Structural number (SN) of the pavement, and
5. Distress level due to transverse cracking.

It is to be noted that pure deflection values were not used as predictors. Rather the structural

number of the pavement which can be derived from the deflection results is used as a predictor. This

was done because a pavement with a strong subgrade and weak AC, base and subbase layers may

have the same first sensor deflection value as a pavement with a weak subgrade and strong AC, base

and subbase layers. The structural number, on the other hand, is known to be more representative

of the structural condition of the layers above subgrade. However, since the deflection results are

mostly unaffected by transverse cracking (FWD tests are conducted away from the cracks), the

distress level  of transverse cracking was used as a predictor. Multiple linear regression models were

developed with the above predictors as independent variables to objectively quantify the decrease

in the PSE values.

 A parallel study by the junior author for his master’s thesis (Chowdhury 1998)  used the

Bayesian regression modeling approach to objectively quantify the decrease in the PSE values.

XLBAYES, an EXCEL-based software, was used to develop similar models using the same

variables used in the multiple linear regression analysis done earlier. Bayesian regression modeling

has been introduced by the Canadian Strategic Highway Research Program (C-SHRP) for analyzing
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the Canadian Long-Term Pavement Performance (C-LTPP) data. Chowdhury (1998) also tested the

models developed by the classical regression and Bayesian regression on a different set of data, and

appropriate models were recommended for global use on the KDOT network.

1.4 Synopsis

This report is divided into seven chapters. In Chapter 1, the introduction to the problem, the

objectives of this study, and study approach are discussed. In Chapter 2, a literature review of

previous work is presented. Chapter 3 deals with the  determination of FWD test sample size

(percent mileage), and test intervals, and frequency at the network level. It also discusses the

network-level pavement structural evaluation. Regression models were developed to predict the

decrease in the structural number, and thus, forecasts were made on the structural deterioration of

the pavements in Kansas.  In Chapter 4, multiple linear regression analysis was performed to predict

the decrease in PSE values by using variables which reflect the structural, climatic, traffic and

surface condition of the pavements. Chapters 5 and 6 have been borrowed from the master’s thesis

of Chowdhury (1998). Chapter 5 describes the Bayesian Regression and its application in the

determination of PSE values using the same set of variables as in the classical regression analysis.

Chapter 6 analyzes the performance of the selected models on a different set of pavements with data

from different years. The performances of the classical and Bayesian models are also compared.

Finally, Chapter 7 presents the conclusions and recommendations.
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2.0  LITERATURE REVIEW

An extensive literature search was conducted to obtain a thorough knowledge about

deflection tests, backcalculation of pavement layer moduli,  and determination of  effective

structural number from the NDT tests.  Also, the need to predict the deterioration of pavements

and the role of empirical study in this respect was assessed from different studies. 

2.1 The Need to Predict Deterioration

A World Bank study in 1987 estimated that a quarter of the paved roads outside urban

areas in developing countries were in need of reconstruction, and that an additional 40 percent of

paved roads required strengthening then or in the next few years (Paterson et al. 1987). Similar

situations have been arising in developed countries to varying degrees from the eighties.  For

example, the accelerated deterioration of  federally-aided  highways in the United States required

a 44 percent increase in funding in 1982 to meet the repair  and rehabilitation costs of the system.

Extensive rehabilitation programs have also been planned in most European countries (Paterson

et al. 1987).   A recent journal of the National Asphalt Pavement Association (NAPA) reveals the

fact that "America' s interstate highway system- 42,700 miles of it, once the envy of the world,

is visibly deteriorating"  (NAPA 1998). The system already carries 2 ½  times the traffic it did in

1975, and congestion is still increasing.  In the past seven years,  highway capacity has grown 2%

while the traffic has increased to 37% (NAPA 1998). In May of 1998, the Congress passed the

TEA-21 (Transportation Equity Act for the 21st Century), the six-year  $216 billion highway bill

for roads,  bridges and mass transit.  Until the year 2003, the bill is believed to guarantee that all

incoming revenues to the Highway Trust Fund can only be used for highway and mass transit

investments. It is also believed that even if the entire $216 billion is spent on repairing interstates,
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it would not be enough to restore, upgrade,  and maintain them (NAPA: Focus on Hot Mix Asphalt

Technology 1998).

Such projections at the international and national levels exemplify the problems facing the

highway planners,  financiers,  managers and engineers everywhere at national or local levels and

to varying degrees.  The problem concerns deter ioration of an aging road infrastructure and how

best to control it,  taking into account the best interests and constraints of the economy and

resources.  Largely because of the worldwide need for extensive rehabilitation programs in the

1980s and 1990s, and in order to avoid such sharp peaks in  highway expenditure,  increasing

efforts are being made to develop and implement improved road management and planning tools.

These tools are required for evaluating the allocation of financial needs of the road maintenance

and rehabilitation programs,  for evaluating the design and maintenance standards appropriate for

the funding available to the highway sector,  and for planning and prior itizing works in the

program. Tools are also needed for evaluating the costs of road use  as a basis of pricing and

taxation in the transport sector (Paterson et al. 1987).

All such projections and evaluations depend upon predictions of the rate at which roads

in the network will deteriorate and of the effectiveness of different maintenance options, dependent

on current state and projected trends of traffic, economic growth and available resources.  At the

heart is a model of road deterioration, which may be as simple as a fixed estimate of life,  such

as, paved roads need major rehabilitation every 20 years.  The model may be more complex, for

example, taking into account the traffic projections,  existing road structure, and specific standards

of service and design. Paterson et al. (1987) also argued that the increasing demands for improved

management and planning techniques, and for economic justification of expenditures and standards
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in the highway sector , are placing much more exacting requirements on the models of road

deterioration.

2.2 The Roles of Empirical and Mechanistic Methods

While much of the knowledge of pavement behavior historically has been based on

theoretical considerations,  empirical observations have always  provided the basis for  formulating

the criteria to be applied in practice.  The reason for this is clear.  Under traffic and climate,  the

long term behavior of natural and treated road materials is influenced by numerous and complex

factors and is highly variable. Thus the criteria for acceptable performance involves subjectively

determined limits of riding quality and other modes of distress.  The large number of var iables

involved, however,  strains the method,  and the capability to improve the structural efficiency of

pavements. It also extrapolates design to the magnitude of loading and to the types of material that

are beyond the scope of available field data.  These have been the factors behind the recent effort

toward developing the mechanistic analysis techniques (Paterson et al. 1987).  Mechanistic

methods are based on a theoretical analysis of the stresses included in a pavement under load,

mechanical properties of materials, and experimental models of the behavior of materials under

repetitive loadings at different environmental conditions. However, the methods need validation

and calibration to the full range of real conditions.  These methods currently lack the prediction

of roughness and surface disintegration which are important determinants for maintenance needs

(Paterson et al. 1987).

Empirical study can be used to quantify and distinguish the long term parallel effects of

mixed traffic loading and environmental factors on pavement performance. Perhaps, it is the only

method by which the real rates of distress development, the interaction between distress types,  and
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the relative effectiveness of different maintenance activities can be quantified. On the other hand,

mechanistic analyses and accelerated loading studies have been invaluable in identifying the

fundamental variables and appropriate functional forms for the development of each type of

distress (Paterson et al. 1987).

2.3 Structural Evaluation of Existing Pavements

Structural deterioration is defined as any condition that reduces the load-carrying capacity

of the pavement (AASHTO 1993). In the AASHTO Pavement Design Guide, the structural

capacity of a new pavement is denoted as SC0 (Figure 2. 1). For flexible pavements,  structural

capacity is expressed by the structural number, SN.  For r igid pavements, structural capacity is

the slab thickness, D.  For existing composite pavements (asphalt concrete overlay over Portland

cement concrete,  AC/PCC), the structural capacity is expressed as an equivalent slab thickness,

Deff. This research deals with the flexible pavements only.

The structural capacity of the flexible pavements declines with time and traffic. The

effective structural capacity of existing flexible pavements is expressed as SN eff. The primary

objective of a structural evaluation program is to determine the effective structural capacity of the

existing pavements. However , no single specific methods exists for evaluating structural capacity.

The evaluation of effective structural capacity must consider the current condition of the existing

pavement materials, and also consider how those materials will behave in the future.  Three

alternative methods are recommended  by the 1993 AASHTO Guide to determine the effective

structural capacity:

1. Structural capacity based on visual survey and material testing. 

This involves the assessment of current conditions based on the distress and drainage surveys,  and



Figure 2.1 Illustration of Structural Capacity Loss Over Time And With Traffic (After
AASHTO 1993)
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usually some coring and testing materials.

2. Structural capacity based on nondestructive deflection testing.

This approach is a direct evaluation of the in situ subgrade and pavement stiffness along the

project.

3. Structural capacity based on fatigue damage from traffic.

Knowledge of past traffic is used to assess the existing fatigue damage in the pavement. This

method is most applicable to the pavements which have very little visible deterioration.

2.4 Nondestructive Deflection Testing

Nondestructive deflection testing (NDT) is an extremely valuable and rapidly developing

technology. When properly applied, NDT can provide a vast amount of information and analysis

at a reasonable expenditure of time,  money and effort.  The analyses,   however,  can be quite

sensitive to the unknown conditions and must be performed by knowledgeable, experienced

personnel (AASHTO 1993). For flexible pavement evaluation, NDT serves two functions:

1. To estimate the roadbed soil resilient modulus,  and

2.  To provide a direct estimate of  SNeff  of the pavement structure.

For this research project, NDT data was used to calculate the effective structural number

(SNeff) of the pavement. The method recommended in  the 1993 AASHTO Guide was followed

in the process.

2.4. 1 Temperature-Deflection Correction

A wide range in modulus of an asphalt material may occur as the temperature varies from

cool to warm conditions.  At very cold temperatures, the modulus of an asphalt mix may approach
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the stiffness values of Portland Cement Concrete (6.9 GPa to 13. 78 GPa or 1 to 2  million psi)

while at very warm temperatures, the mix may have an elastic modulus slightly greater than the

high quality unbound stone base (3.4 MPa to 1.4 GPa or 50,000 to 200,000 psi).  This is due to

the fact that asphalt is a viscous material and its properties are highly dependent on temperature.

Therefore,  the FWD first sensor deflection data must be corrected and standardized (at 20oC or

68°F) before it can be used  in the calculation of effective structural number. However,   the first

task is to determine the average pavement temperature during the FWD deflection test.

2.4. 2 Determination of Average Pavement  Temperature

The most direct way to determine the temperature of the asphalt layers during an NDT

deflection test is to physically measure the temperature.  Care must be taken to recognize that with

increased depth into the asphalt layer fairly high temperature gradients may occur at a given time.

Thus in many cases, the measurement of temperature only at the surface will not suffice as an

accurate measurement of the ' average'  or ' effective'  temperature of the entire layer.  The thicker

the asphalt layer,  the greater the need to evaluate the overall pavement temperature for the entire

layer rather than simply relying on the surface temperature measurements.

The 1986 AASHTO Guide  recommended an alternative procedure for determination of

effective pavement temperature which was adopted in the 1993 Guide. It is generally

recommended that the pavement temperature be calculated from the graph provided by AASHTO

at three depth locations within the pavement structure: (1) near sur face (less than 25 mm or 1-inch

depth), (2) mid layer, and (3) bottom of the asphalt concrete layer. The average temperature

computed from these values then yields the estimate of the pavement temperature at the time of

the FWD deflection testing.  This procedure requires the following information:
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1. Pavement surface temperature during the FWD test,  and

2. Average air temperature data at the site for the five days previous to the FWD test.

Previous research indicated that this procedure showed excellent consistency when applied

to some states in the U.S. (AASHTO 1986). Therefore, in this study, the AASHTO approach was

followed to calculate the average pavement temperature.   

2.4. 3  Effective Structural Number (SN eff)

At sufficiently large distances from the load,  deflections measured at the pavement surface

are due to the subgrade deformation only and are also independent of the size of the load plate

(AASHTO 1993). This permits the backcalculation of the subgrade resilient modulus (Mr) from

a single deflection measurement and load magnitude using the following equation:

Mr =  (0.24 * P)/ (dr * r) (2.1)

where,

Mr =  backcalculated subgrade resilient modulus, psi,
P   =  applied load, pounds,

 dr   =  deflection at a distance r from the center of the load,  inches, and
r    =  distance from the center of the load, inches.

It should be noted that no temperature adjustment is needed in determining M r since the

deflection used is only due to subgrade deformation.  The deflection used to backcalculate the

subgrade resilient modulus must be measured far enough away that it provides a good estimate

of the subgrade modulus, independent of the effects of any layers  above,  but also close enough

that it is not too small to be measured accurately.  The minimum distance may be found from the

following relationship:

r $ 0.7 ae
(2.2)

ae =  [ a2 +  D2 * (Ep/Mr)
2/3] ½

(2.3)
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where, ae=  radius of the stress bulb at the subgrade-pavement interface, inches
a =  NDT load plate radius, inches
D =  total thickness of pavement layers above the subgrade,  inches
Ep =  effective modulus of all pavement layers above the subgrade, psi.

Ep values may be determined from the ratio Ep/Mr (Figure 1. 2) or based on the following

equation: 

(2.4)

where,  d0 =  deflection measured at the center of the load plate (and adjusted to
a standard temperature of 20°C or 68° F), inches

Once the Ep value is calculated, the effective structural number can be easily determined by

the Equation 2.5 provided by AASHTO:

SNeff   = 0.0045 * D * (Ep)
1/3

(2.5)



Figure 2.2 Determination of Ep/Mr (After AASHTO 1993)
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3.0  NETWORK-LEVEL FWD TESTING

3.1 Introduction

 Structural evaluation provides a wealth of information concerning the expected behavior of

pavements (Haas et al. 1994).  However, due to the expense of data collection and analysis,

structural capacity is not currently evaluated at the network level of pavement management  by many

agencies. The practice is more common at the project level of management. It has been argued that

the structural capacity information, even derived from less intensive sampling than for project level

purposes, can be very useful at the network work level for project prioritization purposes. The

practice exists in a few states and Canadian provinces, such as Idaho, Minnesota, Utah, Alberta, and

Prince Edward Island (Haas et al. 1994). As mentioned earlier, due to limited resources and the large

size of the network, network-level structural data collection annually in Kansas at the same rate (5

to 10 tests per mile) as the project level is not realistic. One of the objectives of this research was to

determine the sample size (percent mileage), test intervals and frequency to be used as guides by

KDOT for network-level FWD testing so that the deflection data can be used as input into the PSE

computation process.

3.2 Data Collection

Deflection data was collected on the asphalt pavements in District IV from 1993 to 1996.

KDOT maintains two types of flexible pavements - Full-Design and Partial-Design Bituminous

Pavements. Full-Design Bituminous (FDBIT) pavements were designed for the current and

projected traffic and usually carry heavier traffic than the Partial-Design Bituminous (PDBIT)

pavements which resulted from the paving and maintenance of the original “farm to market”  roads
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in the forties and fifties. District IV was chosen as the test network since its mileage most closely

approximates the pavement types on the whole KDOT network and thus,  deflection data collected

on this district would be very representative of the KDOT network. The FDBIT and PDBIT

pavement mileages in District IV are 545 and 695 miles, respectively. They represent roughly

15% and 14%,  respectively,  of the total network mileage in Kansas for the two pavement types.

Data for this study was collected on the non-Interstate routes in District IV.   

Pavement surface deflections were measured by a Dynatest 8000 Falling Weight

Deflectometer (FWD). Ten (10) FWD tests per mile were performed on the outer wheel path of the

travel lane. Table 3.1 summarizes the project details for data collection. FWD tests were conducted

each year of the study period on the projects selected by NOS for the long-term rehabilitation

program..  Thus the projects tested in a given year are the candidates for r ehabilitation for a certain

future year and should be in a “similar” condition state. The condition states are defined by NOS

based on roughness,  rutting,  transverse cracking, fatigue cracking and/or block cracking. In total,

approximately 20% of the FDBIT pavements and 36% of the PDBIT pavements from 96

“control” sections in District  IV were included in the study.

Table 3.2 shows some geometric and loading characteristics of the sections selected.  The

annual ESAL’s varied from 42,000 to 264,000 and are fairly representative of the traffic loads on

KDOT’s non-Interstate network. On average, the loading on the FDBIT pavements was three to

four times the loading on the PDBIT pavements.     
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Table 3.1  Data Collection Summary

Year
Pavement Type No. of Control

Sections 
Full Design Partial Design 

Miles % of Miles % of

1993 36 6.6 107 15.4 43

1994 15 2.7 71 10.2 25

1995 25 4.6 9 1.3 11

1996 34 6.2 60 8.6 17

Total 110 20.1 247 35.5 96

Table 3.2 Characteristics of the Study Sections

Year Pavement
Type

Average
Length
(mile)

Average
Annual
ESALs

No. of
Control
Sections

1993 FDBIT 3.027 198,000 12

PDBIT 3.359 71,000 31

1994 FDBIT 3.003 264,000 5

PDBIT 3.548 58,000 20

1995 FDBIT 3.116 128,000 8

PDBIT 2.686 44,000 3

1996 FDBIT 5.654 188,000 6

PDBIT 6.624 42,000 15

3.3 Response Variables and Analysis Method

The following attributes were selected as response variables:

1. Normalized and Temperature-corrected first sensor deflection (d1),

2. Subgrade Resilient Modulus (Mr), backcalculated from the FWD data following the
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AASHTO Guide algorithm, and
 
3. Effective Pavement Modulus (Ep), also computed following the AASHTO Guide

algorithm. 

The FWD first sensor deflection values were normalized to 40 kN (9, 000 lb) load level

and then corrected to a temperature of 20o C (68o F) following the methodology proposed by

Southgate and Deen and adopted by AASHTO (AASHTO Guide 1993).   

3.4 Trends of Response Variables

Table 3.3 shows the summary statistics for d1, Mr, and Ep for the years 1993 thru 1996 for the

control sections. It appears that the coefficients of the variations for the backcalculated subgrade

moduli were similar over the years, indicating the effects of spatial variation rather than variation

over the time period considered. The coefficients of the variations are the highest for the Ep's which

is derived from the other two parameters. It appears that the variabilities in those parameters are

magnified in the calculation process. Table 3.3 shows the results of the student's t-tests between the

means of these variables for the four years of study period.  For all variables, there were no

significant differences among the means of these variables for 1993, 1994, and 1995.  Thus, the

mean values of d1, Mr, and Ep  did not change significantly over three years. However, significant

differences were noted between the first-sensor deflection values for 1996 and 1993 for both

pavement types.  

These results imply that the average structural capacity of the pavement network in Kansas

most likely change over a three year period.  In other words, it takes about three years of traffic

and climatic affect to significantly change the average structural condition of the network.        

3.5 Limit of Accuracy Curves 

It is well known that tests conducted on pavement analysis units provide an estimate of the

actual mean and standard deviation of the attribute under investigation. As the number of test  
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Table 3.3  Summary Statistics of the Response Variables 

Variab le Year Pavement Type

Full Design Partial Design

Mean Std. Dev. C.V.  (%) n Mean Std. Dev. C.V.  (%) n

d1

(mils)

1993 11.3 5.6 50 12 23.6 10.3 44 31

1994 9.6 0.8 9 5 24.3 10.5 43 20

1995 14 5 36 8 19.7 5.5 28 3

1996 19.3 9 47 6 19.7 7.2 37 11

Mr

(ksi)

1993 17.7 4.3 25 12 12.5 3.3 26 31

1994 14.9 3.1 21 5 10.7 3.1 29 20

1995 16.4 4.2 26 8 13.2 2.6 20 3

1996 12.7 3.2 25 6 12.6 2.0 16 11

EP

(ksi)

1993 250 190 75 12 318 241 76 31

1994 267 110 40 5 447 412 92 20

1995 149 58 39 8 352 167 48 3

1996 207 115 56 6 317 285 90 11

Note: 1 psi = 6.89 kPa
         1 mil = 0.025 mm
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Table 3.4 Students t-test Results at 5% level of Significance

Response
Variable 

Pavement
Type

Test t-
statistic

d.o.f. Results

d1 FDBIT 1996 vs. 1995 -1.413 7* not significant

1996 vs. 1994 -2.207 8* not significant

1996 vs. 1993 -2.309 16 significant 

PDBIT 1996 vs. 1995 -0.0076 12 not significant

1996 vs. 1994 1.284 29 not significant

1996 vs. 1993 2.141 40 significant 

M r FDBIT 1996 vs. 1995 1.824 12 not significant

1996 vs. 1994 1.183 9 not significant

1996 vs. 1993 2.499 16 significant

PDBIT 1996 vs. 1995 0.45 12 not significant

1996 vs. 1994 -1.794 29 not significant

1996 vs. 1993 0.059 31* not significant

Ep FDBIT 1996 vs. 1995 -1.118 7* not significant

1996 vs. 1994 0.902 9 not significant

1996 vs. 1993 2.596 15* significant

PDBIT 1996 vs. 1995 0.199 12 not significant

1996 vs. 1994 0.928 29 not significant

1996 vs. 1993 2.287 34** not significant

 
* unequal variances 
** a few projects were eliminated due to unreliable thickness data
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increases, the estimated value more closely approximates the true value. However, as mentioned

earlier, more tests translate to more expenses and in some cases, unrealistic data collection and

analysis expenses. The principles of statistical confidence levels can be used to determine how many

tests will be necessary to ensure that the estimated mean is within a certain limit of the actual mean.

Statistical limit of the accuracy curves helps assess the impact of the number of tests conducted on

the precision of the estimate. The limit of accuracy, R, represents the probable range of the variation

of the "true" mean from the average obtained by "n" tests at a given degree of confidence.

Mathematically,

R = K" ( F /%n) (3.1)

where, K" = standardized normal deviate, which is a function of the
desired confidence level, 

F = standard deviation of the variable  (d1 ), 
n = number of FWD tests conducted or percent network mileage

tested at a fixed interval, and 
 R = allowable error in the random variable being considered.

It is to be noted that for a given confidence interval, standard deviation and number of tests,

the corresponding error could be computed using Equation 3.1.  For a given variable (e.g.,

deflection), if the confidence level (e.g., 95%),  K"   and F are known, the R value would be inversely

proportional to the square root of the number of tests randomly selected. The relationship between

the R value and the number of tests is depicted in Figure 3.1. AASHTO defines three zones along

the accuracy curve. In Zone I, characterized by a steep slope, the precision of the estimate

significantly increases with each additional test or sample and the benefit-cost ratios for increasing

the number of tests per analysis are quite high.  Zone III, on the other hand, is a region with little

slope, where even large increases in the number of tests/samples obtained will not significantly

improve the precision 



Figure 3.1 Typical Limit of Accuracy Curve for All Pavement Variables (after AASHTO
1993)
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of the estimate, and the costs associated with additional testing may outweigh the benefits.  Zone II

represents the “optimal” range in developing a test program, because it represents the area where

accurate estimates will be made using a minimum number of tests (AASHTO Guide 1993).   

3.6 Error Analysis 

For this analysis, the temperature-corrected first sensor deflection (d1) was chosen as the

response variable and the values of d1 for 1993, 1994 and 1995 were aggregated for the analysis. The

error values associated with d1 were computed as:

% Error =  ( Absolute Error/ Average value ) * 100 (3.2)

All error calculations were done at 95% confidence level for which the value of K" is 1.96. 

For each project, the average and standard deviation of the first-sensor deflections were

computed. For error analysis of the FWD tests on the percentage of network mileage covered, it was

assumed that the “true” standard deviation of the first-sensor deflections of each project is equal to

the standard deviation obtained from the tests on 100% of the network covered without errors. 

Table 3.4 shows the error analysis results for the network mileage tested. It is interesting to

note that the percent error values corresponding to the percent network mileage tested are similar for

the FDBIT and PDBIT pavements. Thus the percent error values for the two pavement types were

combined and the following regression equation for the percent error was developed:

percent (%) error = exp (4.096 - 0.5115 ln (% network mileage)) (3.3)

( R2 = 0.976, Standard Error = 1.142) 

Figure 3.2 shows a plot of Equation 3.3. It is apparent that the FWD tests on more than

approximately 20 percent of network mileage will not significantly increase the precision of the

estimate or the first-sensor deflection value. Hence 20 percent mileage could be selected as a

reasonable sample size in network-level structural evaluation of flexible pavements. This would 



Table 3.5 Error Analysis Results

Pavement Type 

Full Design Partial Design

% Network R Error (%) % Network R Error (%)

14 1.9 16 27 2.7 11

10.5 2.3 19 20 2.9 13

7 2.55 22 13.5 3.2 16

3.5 3.4 33 7 3.7 20

Figure 3.2 Network Level FWD Testing Requirements
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translate into approximately 3,542 lane-km (2,200 lane-miles) of testing in three years. Thus, KDOT

should test its system on a 3-year cycle or approximately 1,208 lane-km (750 lane-miles) each year

for network evaluation. With two FWD units, this would require 19, 10-hour work days of testing

each year. 

For the error analysis of the FWD test rate on a particular project, it was assumed that the

“true” standard deviation of the first-sensor deflections of each project is equal to the standard

deviation obtained from 10 tests per mile. Percentage errors for the test intervals of seven, five, three,

and one test per mile were computed. The 10 tests were done at about 160 m intervals. For seven

tests per mile, every third test point was ignored. For five tests per mile, every other test point was

ignored. For three tests per mile, the first, fourth and seventh test points were taken for analysis.

The one test per mile was assumed to be at the beginning of each project.  Results in Table 3.5

show that the average error does not vary significantly for  seven,  five, or  three tests per mile.

Thus, the lowest test rate,  three tests per mile could be taken as the spatial test frequency at the

network level. 

The suggested test coverage of 20% mileage and spatial frequency of three tests per mile

were tested with the FWD data collected in 1995. That year, 25 miles of FDBIT pavements were

tested. Twenty percent mileage translated to only five miles of testing in 1995.  Different

combinations of the control sections which would result in five miles of testing showed that the

average error  for the spatial frequency of three tests per mile ranged from 14% to 16% , compared

to 13% to 15% for five tests per mile, and 12% to 13% for seven tests per mile. 

This testing would be necessary for network level structural evaluation of the KDOT

pavements and also for using/updating the models to be developed in this study. 
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Table 3.6  Determination of the Number of Tests Per Mile at the Network Level

Percent error in FWD 1st sensor deflection for various test intervals 

(1995 data)

Route Number of Tests Per Mile

7 5 3 1

US 54 14 16 18 39

US 59 6 8 9 15

US 59 12 14 17 35

US 59 8 9 13 25

K 68 15 18 21 44

K 68 10 12 21 44

K 68 14 16 19 40

K 103 9 10 12 25

K 103 7 9 11 22

K 126 16 21 23 47

US 169 9 10 12 25

Average 11 12 14 29
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3.7 Prediction of the Decrease in Structural Number

In this study, the network-level structural deter ioration was predicted through

quantification of the decrease in the structural number of the existing pavements estimated from

the FWD data. This was necessary because this decrease in structural number will be used as a

predictor for estimating PSE values for the control section.  It is apparent that in the future,  FWD

test results will not be available for all control sections on the network.  However,  the decrease

in structural number still could be estimated for any section based on the models to be developed.

The approach for structural evaluation was based on the second technique for pavement

structural evaluation suggested by the 1993 AASHTO Pavement Design Guide. The technique,

based on nondestructive testing (NDT) as discussed in Chapter 2 of this repor t, was used.

Following this approach,  the effective structural numbers (SNeff) of the pavement sections were

calculated using FWD data collected in 1993,  1994, and 1995.

The FWD first sensor deflection values were normalized to 40 kN (9, 000 lb) load and

were also corrected for temperature at 20° C (68°F).  The deflection values were then used to

calculate the subgrade resilient modulus (M r). The effective Ep values were determined from

Equation (2.4).  Once the Ep value had been calculated, the effective structural number was found

by the following formula provided by AASHTO:

SNeff   =  0.0045 * D * (Ep)
1/3

(3.4)

The original structural numbers of the existing flexible pavements after rehabilitation

actions, calculated according to the algorithms in KDOT’s HYNELIFE program, were obtained

from the KDOT’s CANSYS database.

The decrease in structural number ()SN) was then computed as:

)SN =  SN (CANSYS) - SNeff (3.5)
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3.7.1 Model Development

The major factors contributing to the structural deterioration of asphalt pavements are traffic

and climate. In this study, the age of the pavement was taken as a surrogate variable for the climatic

affect or aging. Three variables were selected to predict the decrease in structural number ()SN)

to assess structural deterioration at the network level: 

1. Age (in years) of the pavement since the last rehabilitation action,

2. Cumulative number of ESAL's that have passed over the pavement since the last
rehabilitation action, and 

3. Thickness (in inches) of the asphalt concrete (AC) layer.

The thickness and rehabilitation histories of the pavement sections under study were

collected from the HYNERES database of KDOT.  Specifically, the following information was

obtained:

(i) Years corresponding to different rehabilitation actions, 

(ii) Type of rehabilitation action, and

(iii) Thickness of the overlay (s). 

The AC layer thickness, the total thickness of the pavement sections above subgrade, and the

age of the pavement since the last rehabilitation action were then calculated. The total thickness of

the pavement sections is necessary during computation of the effective pavement modulus, Ep.  

During this analysis, the FDBIT and PDBIT pavements were treated separately since the

structural behavior of these pavements is different. By doing simple linear regression analysis, it was

apparent that the decrease in structural number was highly correlated with the age, cumulative

number of ESAL's and AC layer thickness for the FDBIT pavements, and the age and cumulative

ESAL's for the PDBIT pavements. To select the correct variables, three variable selection methods



31

of the Statistical Analysis System (SAS) software were used:

a. Forward Selection Method, 
b. Backward Elimination Method, and
c. Stepwise Method

The results of these three variable selection methods are shown in Table 3.6. All three

variables were selected for the FDBIT pavements, but the AC layer thickness was not selected 

for the PDBIT pavements. As mentioned earlier, PDBIT pavements are “built up” pavements-

basically asphalt surfaced  pavements which trace back to “farm to market roads” in the mid forties

and fifties. The thicknesses of such pavements were really not designed to carry a specific traffic.

This fact also is supported by the three independent variable selection methods of SAS indicating

that the AC layer thickness of the existing pavement does not play an important role in determining

the decrease in structural number of the PDBIT pavements. Therefore, thickness was dropped from

the PDBIT model as a predictor variable.  Also, a correlation study among the proposed variables

revealed that the age and cumulative ESAL's are highly correlated to each other (64.3% for FDBIT

and 62.1% for PDBIT pavements). Thus, to avoid multicolinearity,  only one of them was included

in the model, and the variable 'age' was selected because of its greater contribution to the R2 value.

Two types of models were selected in each case. The first one was a regular regression model with

an intercept.  The other model was forced to have a zero intercept. From a practical point of view,

a zero-intercept model is more justifiable since it implies that the structural number will remain

unchanged if the age since the last action is zero (i.e., just after the rehabilitation action) and the AC

layer thickness is zero. For FDBIT pavements, the R2 value for the intercept model was 83.4% and

for the zero-intercept model, 81.3%. These values for the PDBIT pavements were 75.8% and 72.0%,

respectively. For both types of pavements, the zero-intercept model was selected for being practical.
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Table 3.7 Variable Selection Process Summary

Method of Selection
Variables selected by SAS

FDBIT Pavements PDBIT Pavements

Forward 
Selection 

1. Age
2. AC layer thickness
3. Cumulative ESAL

1. Age
2. Cumulative ESAL

Backward
Elimination

1. Age
2. Cumulative ESAL
3.  AC layer thickness

1. Age
2. Cumulative ESAL

Stepwise 
Method

1. Age
2. AC layer thickness
3. Cumulative ESAL

1. Age
2. Cumulative ESAL

3.8 Models Obtained and the 'Model Utility' Test

FDBIT Pavements: For the FDBIT pavements, the model to predict a decrease in structural

number is:       

ªSN = 0.0218 * age +  0.001 * AC layer thickness (3.6)

As shown in Table 3.7, the R2 of the FDBIT pavements model is 0.8127. The significance

values (p-values) for the parameters are: age: 0.0001 and AC layer thickness: 0.0176,  indicating that

both variables are significant at a level of more than 98%. The analysis of variance (ANOVA) for

this model showed that the model has an F-value of 320 and its significance value is 0.0001. Since

the selected model has a high F-value and a very low p-value, it satisfactorily passes the model

utility test. The test shows that the model is helpful and adequate in predicting the dependent

variable, )SN. Also, the estimated root mean square error (F) value for the model is 0.044, which

indicates the selected model will predict the decrease in structural number (ªSN) at the network

level with a variability of ±2F or ±0.088 for a confidence level of 99.99%.
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Table 3.8 SAS ANOVA Results for the Model Developed for FDBIT Pavements 

Source Degrees of
Freedom

Sum of
Squares

Mean
Square

F
Value

Prob >
F

Model 2 1.29274 0.6463 320.03 0.0001

Error 37 0.07473 0.0020

Total 39 1.36747

Root MSE:  0.04494       R-square: 0.8127
Dep. Mean: 0.15758       Adj. R-sq: 0.8095

C.V.     28.51995

Parameter Estimates

Variable Deg. of
Freedom

Parameter
Estimate

Standard
Error

T for Ho:
Parameter = 0

Prob >
{T}

AGE 1 0.021872 0.00189 11.56 0.0001

THICKNESS 1 0.001025 0.00099 1.034 0.0176

 

PDBIT Pavements: For the PDBIT pavements, the selected model is: 

ªSN = 0.0166 * age (3.7)

The R2 value for this model is 0.7195 and the significance (p) value for the parameter age is

0.0001; i.e., the variable age is significant at a level more than 99%. The ANOVA results in  Table

3.8 for this model indicates that the model has an F-value of 842, and its significance value is

0.0001. Since the selected model also has a high F-value and a very low p-value, it satisfactorily

passes the model utility test. Also the estimated root mean square error (F) value for the model is

0.046, which reveals that the selected model will predict the decrease in structural number at a

variability of ±2F or  ±0.092 with a confidence level of 99%.

The FDBIT and PDBIT models indicate that a 25-mm (1.0-inch) AC overlay with a structural
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Table 3.9 SAS ANOVA Results for the Model Developed for PDBIT Pavements 

Source Degrees of
Freedom

Sum of
Squares

Mean
Square

F
Value

Prob > F

Model 1 1.84718 1.84718 841.8 0.0001

Error 84 0.18432 0.00219

Total 85 2.03150

Root MSE:  0.04684       R-square: 0.7195
Dep. Mean: 0.14286       Adj. R-sq: 0.7098

C.V.:     32.79012

Parameter Estimates

Variable Deg. of
Freedom

Parameter
Estimate

Standard
Error

T for Ho:
Parameter = 0

Prob >
{T}

AGE 1 0.016685 0.000575 29.014 0.000

layer coefficient of 0.42 on 200-mm (8.0-in) thick asphalt pavements will have no affect on the

decrease of the structural number of the pavement in about 19 and 25 years, respectively, for these

two types of pavement. In other words, the fatigue lives of these AC layers will be fully consumed

by that time. According to the algorithms in HYNELIFE, in 10 years the decrease in structural

number of this overlay would be 0.08 (= 0.42-0.34). Moreover, the decrease in the structural number

of a 25-mm (1-inch) AC layer which has been overlaid two times over a period of 20 years (one

overlay every 10 years) is 0.28 (i.e., ªSN=0.28).   However, the models in this study (Equations 3.6

& 3.7) show that after 20 years, on average, the decrease in structural number of a 25-mm (1-inch)

overlay would be 0.42.  Thus, these models overestimate the damage by 0.42/0.28 (= 150%) or 50%

higher compared to the assumptions in HYNELIFE. 
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4.0  CLASSICAL REGRESSION ANALYSIS TO PREDICT THE
DECREASE IN PSE VALUES 

4.1 Multiple Regression Analysis

The major objective of this research was to objectively and quantitatively determine the

PSE values of the pavements since the last rehabilitation action. However,  the decrease in PSE

value was taken as the dependent variable because it somewhat represents a “normalized” value.

Classical multiple regression analysis was performed to estimate the decrease in the PSE ()PSE)

values. One of the most important aspects of classical regression analysis is the selection of

independent variables which are strong indicators of the dependent variable.  The selection was

done in two steps (Ott 1993):

(i) Enumerating the independent variables,  and 
(ii) Evaluating and selecting independent variables subjectively or by analyzing

correlation.

4.2 Selection of Independent Variables for the Prediction of Decrease in the PSE Values

Extensive literature search was done to select the independent variables to predict the

decrease in the PSE values. Expert opinion was also sought for this purpose. Since PSE ratings are

based on the condition of the base and surface, as indicated by the maintenance costs, subgrade

failures, and ability of the section to provide an adequate surface for the prevailing traffic, the

following variables were selected to reflect those conditions:

1. Age of the pavement since the last rehabilitation action (in years),
2. Cumulative ESAL’s that have passed over the pavement since the last action,
3. AC layer thickness (in inches),
4. PSE value assigned to the pavement immediately after the last action,

5. Decrease in structural number ()SN), and
6. Distress level due to transverse cracking.

The selected variables were plotted on scatter plots against the dependent variable, )PSE
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values, and were inspected for  possible trends.  Also, correlation coefficients for different pairs were

determined. It was apparent from the scatter plot that age and )SN were not linearly related to )PSE

values. In the case of age, the rationale is that PSE values do not decrease at the same rate with time.

During the initial years this rate is lower, but after a certain period, the PSE values start to decrease

drastically. A trial-and-error approach was followed to determine the transformed functional form

for an independent variable (Chowdhury 1998). After  several trials,  the variable age was

transformed to (age)1.5. For the relationship between the dependent variable, )PSE, and the

independent variable,  age, the Pearson' s correlation coefficients improved from 0. 35 to 0.68  for

the FDBIT and 0.39 to 0.56 for  the PDBIT pavements, when the transformation was performed.

Similarly, the variable, decrease in structural number, )SN, was transformed to exp()SN) to

improve the correlation coefficient of the relationship from 0.49 to 0.61 for  the FDBIT and 0.48

to 0.55 for the PDBIT pavements, respectively. The variable AC layer thickness was dropped

from the PDBIT model as a predictor since the thickness of this type of pavement was not

designed to carry the expected traffic. Another  important fact to note is that the variables age and

cumulative ESALs have a very high correlation between themselves (correlation coefficient of

0.65 for FDBIT and 0.58 for  PDBIT). Therefore,  only one of them, (age),  was included in the

model to avoid possible multicolinearity or overspecification of the model (Chowdhury 1998).

Transverse cracking was included in the model as a binary variable.  Transverse cracking

on the pavements in Kansas is measured by the number of equivalent roadway-width cracks.

According to the KDOT PMS rating guide (KDOT 1996), the crack severity is categorized using

three severity codes:

Code 1: No roughness,  6 mm (0.25 in.) or  wider with no secondary cracking; or
any width with secondary cracking less than 1. 2 m (4 ft) per lane.

Code 2: Any width crack with noticeable roughness due to depression or bump.
Also includes cracks that have greater than 1.2 m (4 ft) of secondary
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cracking, but no roughness.

Code 3: Any width crack with significant roughness due to depression or  bump.
Secondary cracking will be more severe than code 2.

Different combinations of the coded cracks will result in different distress levels due to

transverse cracking (KDOT 1996).  Distress levels due to transverse cracking are defined as shown

in Table 4.1.

Table 4.1 Distress Levels Due to Transverse Cracks

DISTRESS
LEVELS

TRANSVERSE CRACK CODES

CODE 1 CODE 2 CODE 3

DL 1 < 3 0 0

DL 2 $ 3 < 3 < 2

DL 3 ANY NO. $ 3 $ 2

4.3  Criteria Used to Select a Model

The following criteria were used to select a model:

(i) Minimize mean sum square errors (MSE): The smallest MSE will result in the narrowest
confidence intervals and largest test statistics. The  model with the smallest MSE involving
the least number of independent variables can generally be considered as the best model
(Ott 1993).

(ii) Maximize the Coefficient of Determination (R2):  R2 is a measure of how well the estimated
model fits the observed data. The best model selected is generally the one with the largest
R2.  

(iii) Minimum increase of R2 : The best model is selected as the model associated with the
smallest increase in R2 with the addition of an extra variable.
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(iv) Mallows Cp  statistic: The best model is usually thought to have a Cp value closest to p,
where,  p is the number  of regression coefficients. Models associated with Cp greater than
p are usually thought to be biased or misspecified models (Ott 1993).

4.4 Models Obtained and the 'Model Utility' Tests

FDBIT Pavements: Detailed analyses and summary statistics of the model development

have been described by Chowdhury (1998).  For FDBIT pavements, the selected models are:

Distress Level 1

)PSE =  0.216* (AGE)1.5 - 20.82*exp[)SN] + 0.138*TH + 0.328* PSE  + 17.65*DL1 

(4.1)

Distress Level 2

)PSE =  0.216* (AGE)1.5 - 20.82*exp[)SN] + 0.138*TH + 0.328* PSE  + 18.06* DL2 

(4.2)

Distress Level 3

)PSE =  0.216* (AGE)1.5 - 20.82*exp[)SN] + 0.138*TH + 0.328* PSE  + 18.38* DL3

(4.3)

where, )PSE= Predicted decrease in the PSE value,
AGE= Age of the pavement since the last rehabilitation action (in years),
TH = AC layer thickness (in inches),
PSE= PSE value assigned to the pavement immediately after the last action,
)SN= Decrease in structural number, and
DLi= Distress level due to transverse cracking ( i = 1, 2 and 3).

The p-values for the parameters  imply that all the variables are significant at a level of more

than 95%. The ANOVA  shown in Table 4.2  for the models implies that the model has an F-value

of 37 and its significance value is 0.0001. Since the selected model has a high F-value and a very

low p-value, it satisfactorily passes the model utility test, which indicates that the model is helpful



39

and adequate in predicting the dependent variable.  Also the estimated root mean square error (F)

value for the model is 0.47, which reveals the fact that the selected model will predict the decrease

in PSE values at a variability of ±2F or  ±0.94 with a confidence of 99%.  

It should be noted that the decrease in structural number, )SN, values can be computed from

the FWD data following the methodology described in Chapter 3 or can be estimated using

Equations 3.6 & 3.7 developed previously in Chapter 3. 

PDBIT Pavements : For PDBIT pavements, the selected models are:

Distress Level 1

)PSE =  0.024* (AGE)1.5 - 1.145*exp[)SN]  + 0.171* PSE  + 0.229*DL1 (4.4)  

Distress Level 2

)PSE =  0.024* (AGE)1.5 - 1.145*exp[)SN]  + 0.171* PSE  + 0.958*DL2  (4.5)

Distress Level 3

)PSE =  0.024* (AGE)1.5 - 1.145*exp[)SN]  + 0.171* PSE  + 0.2.27*DL3  (4.6)

The variables in the above equations have been described before. The p-values for the

parameters imply  that all the variables are significant at a level of more than 95%. The ANOVA

shown in Table 4.3  for the models implies that the model has an F-value of 132 and its significance

value is 0.0001. Since the selected model has a high F-value and a very low p-value, it satisfactorily

passes the model utility test, which indicates that the model is helpful and adequate in predicting the

dependent variable.  Also the estimated root mean square error (F) value for the model is 0.47, which

reveals the fact that the selected model will predict the decrease in PSE values at a variability of ±2F

or  ±0.94 with a confidence of 99%.  
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Table 4.2 SAS ANOVA Results for the Model Developed for FDBIT Pavements

Source Degrees of
Freedom

Sum of
Squares

Mean
Square

F
Value

Prob > F

Model 7 59.413 8.487 37.011 0.0001

Error 20 4.586 0.229

Total 27 64.000

Root MSE:  0.478       R-square: 0.7835
Dep. Mean: 1.259       Adj. R-sq: 0.7717

C.V.     38.028

Parameter Estimates

Variable Deg. of
Freedom

Parameter
Estimate

Standard
Error

T for Ho:
Parameter = 0

Prob >
{T}

(AGE)1.5 1 0.21668 0.239 0.906 0.0105

exp[)SN] 1 -20.820 29.999 -0.694 0.0512

THICKNESS 1 0.138 0.049 2.785 0.0114

PSE 1 0.328 0.109 2.989 0.0073

DL1 1 17.655 30.628 0.576 0.0487

DL2 1 18.064 30.636 0.590 0.0197

DL3 1 18.381 30.636 0.600 0.0185
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Table 4.3 SAS ANOVA Results for the Model Developed for PDBIT Pavements 

Source Degrees of
Freedom

Sum of
Squares

Mean
Square

F
Value

Prob > F

Model 6 138.178 23.029 131.67 0.0001

Error 39 6.821 0.174

Total 45 145.000

Root MSE:  0.412       R-square: 0.8665
Dep. Mean: 1.444       Adj. R-sq: 0.855

C.V.     28.953

Parameter Estimates

Variable Deg. of
Freedom

Parameter
Estimate

Standard
Error

T for Ho:
Parameter = 0

Prob >
{T}

(AGE)1.5 1 0.0246 0.0182 1.352 0.0184

exp[)SN] 1 -1.145 0.5559 -2.061 0.0460

PSE 1 0.171 0.0619 2.766 0.0086

DL1 1 0.229 0.4534 0.506 0.0415

DL2 1 0.958 0.4292 2.233 0.0314

DL3 1 2.227 0.4439 5.017 0.0010
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5.0  BAYESIAN REGRESSION ANALYSIS

5.1 Bayesian Regression Methodology

5.1. 1 Introduction

Predictive equations are very important tools for  the pavement management systems.

However, databases to support the developments and updating of these models are lacking. These

databases are often inadequate in sample size, noisy, or incomplete. Conventional statistical

modeling tools,  such as classical regression analysis, may have limited success in these

applications (Kajner et al. 1996).  A promising solution lies in the use of Bayesian regression,

which explicitly allows experts to be used to supplement poor quality data (Kwaeski and Nickeson

1997).  Bayesian regression methodology was adopted by the Canadian Strategic Highway

Research Program (C-SHRP) for the Canadian Long Term Pavement Performance (C-LTPP)

monitoring program.   Nesbit and  Sparks  (1990) discussed the complete rationale for employing

the Bayesian  approach for the C-LTPP program in the report "Design of Long Term Pavement

Monitoring System for the Canadian Strategic Highway Research  Program."

5.1. 2 An Overview of the Bayesian Regression Approach

In its simplest sense, Bayesian regression is a specialized adaption of the Bayes'  Theorem

involving development of multivariate regression models which explicitly consider two disparate

sources of information:

1. A  prior  information,  i.e.  information that is known prior  to an experiment,  and

2. Experimental data, i. e. information that is derived from an experiment.

The interpretation and conclusion drawn from the experimental data can be quite different

depending on what  other evidence exists on the subject  at hand. However,  this difference in
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interpretation does not simply mean biasing a result. Interpretation of results using Bayes'

Theorem is a mathematically consistent way to interpret new evidence/information (Kwaeski and

Nickeson 1997).

The Bayesian statistical method for model development, represented in Figure 5.1,  is to

systematically combine prior knowledge and experience with data to improve the predictive

relationship.  The Bayes approach calculates a meaningful and credible answer without relying

solely on a small database. In doing so,  the Bayes technique allows decisions to be made in the

short term while improvements to the data,  judgement and the model continue to be made

(Kwaeski and Nickeson 1997).

Figure 5.1  The Bayesian Statistical Approach (Kwaeski and Nickeson 1997)

In assembling information for Bayesian regression,  data collected in the traditional manner

is supplemented with prior knowledge. This approach is summarized in the Figure 5. 1. The so-

called ' prior'  may be drawn from expert judgement, " old" data sets, or  knowledge that is

generally accepted in the field. Expert judgement can also be encoded by polling experts and

asking them to estimate the value of the dependent variable for a combination of contributory

variables. Once collected, the experts' observations are interpreted similar  to the traditional data.

.... ..... -•• 11th 
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5.1. 3 Bayesian Regression Software

Two Bayesian regression software packages,  B-STAT and XLBayes, were developed by

VEMAX Management, Inc. , Canada, under contract to C-SHRP.  B-STAT provides an EXCEL

spreadsheet interface to a FORTRAN based Bayesian regression program,  PC-BRAP. XLBayes,

on the other hand, is a much faster Bayesian regression program based entirely in the EXCEL

environment (Kwaeski and Nickeson 1997). The analysis features and numerical results of the two

programs are identical. XLBayes was selected for this research because it is relatively

straightforward and faster.

5.2 Bayesian Regression to Predict the Decrease in PSE Values

The Bayesian regression analysis  using the XLBayes software requires prior data to be

combined with the sample data to obtain the desired posteriors. The prior data can be drawn from

the expert judgement, old data sets or knowledge that is generally accepted in the field. For this

research project, the data set for a number of pavements from Districts I and  IV for 1993 and 1994

were used as prior data, and the data for 1995 were used as the sample data. The same functional

form and transformations of  the independent variables as in the classical regression were used.

5.2.1 Developing Prior and Assembling Sample Data

The prior can be derived either subjectively using expert judgement or objectively based on

existing data or models. Both approaches  require that the prior information be put into either an N-

prior or G-prior format. Both the N-prior or G-prior summarize a linear regression which represents

the prior state of knowledge in the Bayesian regression calculation. The prior includes the

coefficients of the linear regression equation along with  the corresponding regression statistics such

as the variance of the regression coefficients. The regression statistics indicate the certainty of the

prior and are used to weigh the balance between the prior and the data in the Bayesian regression

calculation. A brief overview of the information required to define the  N-prior or a G-prior is

provided in Table 5.1 (Kwaeski and Nickeson 1997). The G-prior option is typically used when the
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coefficient means have been estimated directly by the experts. The G-prior derives the

variance/covariance matrix for the coefficient means based on a set of independent variable data. The

G-prior factor is used to increase or decrease the influence of the prior in the calculation of the

posterior. The G-prior factor is denoted by g. A typical value for g is 1. This essentially gives the

prior variance/covariance matrix weight equal  to that of the experimental data. The greater the value

of g, the more  influence the prior will have on the posterior.  Since the pseudo/prior data used in this

research were not derived from expert opinion only, the N-prior option of Bayesian regression was

used in this analysis.

Table 5.1 Required Prior Information (After Kwaeski and Nickeson 1997)

Prior Information Required for N-prior Required for G-prior

Means vector T T

Variance/Covariance Matrix T -

G-prior data set - T

G-prior factor - T

Residual variance T T

Degrees of freedom T T

5.2.2 Results of Bayesian Regression and Selected Posterior Models

The classical regression results using pseudo data, development of the N-prior and the

posterior regression coefficients for the FDBIT and PDBIT pavements have been reported in detail

by Chowdhury (1998). The selected posterior models using N-prior Bayesian regression analysis are

shown below.

FDBIT Pavements: The selected models for FDBIT pavements are :

Distress Level 1

)PSE =  0.123* (AGE)1.5 - 9.329*exp[)SN] + 0.106*TH + 0.374* PSE  + 5.89*DL1 

(5.1)
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 Distress Level 2

)PSE =  0.123* (AGE)1.5 - 9.329*exp[)SN] + 0.106*TH + 0.374* PSE  + 6.04*DL2 

(5.2)

For Distress Level 3

)PSE =  0.123* (AGE)1.5 - 9.329*exp[)SN] + 0.106*TH + 0.374* PSE  + 6.47*DL3 

(5.3)

PDBIT Pavements:  The selected models for PDBIT pavements are :

Distress Level 1 

)PSE =  0.021* (AGE)1.5 - 1.873*exp[)SN] +  0.303* PSE  + 0.392*DL1 (5.4)

Distress Level 2

)PSE =  0.021* (AGE)1.5 - 1.873*exp[)SN] +  0.303* PSE  + 0.881*DL2 (5.5)

Distress Level 3

)PSE =  0.021* (AGE)1.5 - 1.873*exp[)SN] +  0.303* PSE  + 1.974*DL3 (5.6)

where, )PSE= Predicted decrease in PSE value,
AGE= Age of the pavement since the last rehabilitation action (in years),
TH = AC layer thickness (in inches),
PSE= PSE value assigned to the pavement immediately after the last action,
)SN= Decrease in structural number, and
DLi= Distress level due to transverse cracking ( i = 1, 2, 3).

5.3 Model Evaluation

The purpose of evaluating the model results is to draw conclusions about the Bayesian

posterior results. Evaluation emphasizes comparisons between the data, the prior, and the posterior.

These comparisons may be used for additional iterations for analysis later on. The  statistical

performance of a classical regression model is typically measured by evaluating the standard error

(Se), coefficient of determination (R2), F-statistic, and t-statistic. In Bayesian regression, only Se and

t-statistic can be evaluated. Neither R2 nor the F-statistic  can be calculated because they rely on the
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experimental data which does not exist for the posterior results (Kaweski et al 1997).

5.3.1 Data, Prior, and Posterior PDF Plots

An important output of XLBayes is the PDF (Probability Density Function) plots for each

coefficient in the model. These plots graphically compare the distribution of the same coefficient

when based on the data alone, the prior alone, or the Bayesian posterior. Figures 5.2 through 5.14

show the PDF plots for all coefficients in the models developed in this study.

Under the assumptions of  both classical linear regression and the Bayesian regressions, the

model coefficients follow t-distribution. The width of the bell shaped curve shows the confidence

in the estimating coefficients. The PDF plots of all coefficients reveal the fact that the probability

distribution for the posterior estimate is 'tighter' than either the prior or the data. This is intuitively

reasonable as the prior and the data reinforce each other with similar estimates of the coefficients.

Bayesian  regression models can always be updated by inserting more data in the model which

makes the posterior more and more definitive. 

5.3.2 t-Statistic

The t-test is used to determine whether a regression coefficient is significantly different from

zero. The t-value for a regression coefficient is calculated by dividing the mean of the regression

coefficient by its standard deviation:

t = bi / Fbi

The null hypothesis in this test is :

H0 : bn = 0

which is tested against the alternative hypothesis :

H1 : bn … 0
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Figure 5.2 PDF Plot for Age for FDBIT Pavements
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Figure 5.3 PDF Plot for Thickness for FDBIT Pavements
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Figure 5.4 PDF Plot for Decrease in Structural Number for FDBIT Pavements
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Figure 5.5 PDF Plot for PSE for FDBIT Pavements
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Figure 5.6 PDF Plot for Distress Level 1 for FDBIT Pavements
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Figure 5.7 PDF Plot for Distress Level 2 for FDBIT Pavements
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Figure 5.8 PDF Plot for Distress Level 3 for FDBIT Pavements
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Figure 5.9 PDF Plot for Age for PDBIT Pavements
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Figure 5.10 PDF Plot for Decrease in Structural Number for PDBIT Pavements
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Figure 5.11 PDF Plot for PSE for PDBIT Pavements
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Figure  5.12 PDF Plot for Distress Level 1 for PDBIT Pavements
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Figure  5.13 PDF Plot for Distress Level 2 for PDBIT Pavements
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Figure 5.14 PDF Plot for Distress Level 3 for PDBIT Pavements
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At 5% level of significance, where the number of degrees of freedom is very large (i.e., the

t distribution is approximately the same as the normal distribution), the critical value of t is ± 1.96.

If the t-value is greater than 1.96 or less -1.96,  the null hypothesis  is rejected and it is accepted that

the estimate of  bn is statistically significant. The higher the value of t, the more is the confidence

about its value and significance. If  the t-value is between 1.96 and -1.96,  the null hypothesis is

accepted and it is concluded that the estimate of  bn is not statistically significant. The values

calculated for the coefficients may only be different from zero due to chance. If the regression

coefficients in the prior and posterior are not statistically significant it may be useful to re-run the

analysis after excluding the variable in question. If the standard error term does not increase

significantly, the excluded variable may not be a statistically significant contributory variable.

The ideal result is for the data and prior to reinforce each other, resulting in a posterior

coefficient that has a smaller standard error than either one individually. This is not always the case,

however, and the posterior may in fact have a larger standard error. Irrespective of how much the

variance has changed, it is desirable that the coefficients in the posterior model all be statistically

significant.

The t-statistics and the standard deviations of different coefficients are presented in  Table

5.8. It is observed that the t-statistics of all selected variables are outside the range of 1.96 and -1.96

which means that the null hypothesis is rejected in all cases. Thus, the variables used in the models

are significant at 5% level of significance.

5.3.3 Standard Error of the Residuals (Se)

The standard error of the residuals, Se, is a basic measure of regression model performance.

The standard error (or standard deviation) of the residuals is simply the square root of the residual

variance, Se
2. The lower the Se

 , the closer the predictions made by the model are to the actual 
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Table 5.2 Standard Deviation and t-Statistic of the Posterior Coefficients 

Pavement type Variable Std. Deviation t-value Res. Var. (Se
2)

FDBIT (Age)1.5 0.034 3.620 0.329

Thickness 0.041 2.547

Exp[ª(SN)] 4.240 -2.200

PSE 0.107 3.486

DL1 2.979 1.98

DL2 2.876 2.101

DL3 2.424 2.670

PDBIT (Age)1.5 0.008 2.349 0.203

Exp[ª(SN)] 0.500 -3.746

PSE 0.038 7.850

DL1 0.196 1.990

DL2 0.383 2.301

DL3 0.466 4.234

observations of the dependent variable, and therefore, the better the model.

Under the assumptions of regression, the residual has a mean of zero and is normally

distributed. Thus the confidence interval for the forecasts made by the model can be calculated using

a table of areas under the standard normal curve. For example, 95% confidence interval for a forecast

corresponds to the mean forecast plus or minus 1.96 times the standard deviation of the residual.

Therefore, the selected models will predict the )(PSE) values within ±1.1 units of actual ratings for

FDBIT and ±0.88 units for PDBIT pavements with 95% confidence.
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6.0 RESULTS AND DISCUSSION

6.1 Prediction of )PSE Values Using the Selected Models

As mentioned earlier, data from 1993, 1994, and 1995 were used in the regression

analysis. Statistical tests were performed on the models which yielded very convincing and

satisfactory results. To get an idea about how well the models would perform in the field, data

from a different set of control sections collected in different years were selected.  These  sections

were not included in the regression analyses.  For 1996,  12 FDBIT and 26 PDBIT sections and

for 1997, 10 FDBIT and 19 PDBIT sections were chosen randomly to  test the models developed

in this study. Both classical and Bayesian regression models were used to predict the )PSE values

on those pavement sections. At the same time, the rated decrease in the PSE values assigned by

the KDOT engineers were also collected.  Figures 6.1 through 6.4 show the results graphically.

The PSE values are always assigned as integer numbers.  Since the coefficients of

regression equations are not integers nor  the independent variables, the output from the models

are evidently nonintegers.  So the output values were rationally rounded up or down to the nearest

integer. The predicted )PSE values for most of the pavement sections, very  closely, approximate

the rated )PSE values. A few cases of discrepancies were encountered in the KDOT ratings.  For

example, Project No. 18 in Figure 6. 3 (Route K-68), the PSE rating has been increased by two

although no rehabilitation action had been taken on this pavement for the last four years. On the

other hand, both the Bayesian and Classical regression models suggest that the PSE value should

decrease by two.  Similarly, other discrepancies in the present rating system were rationally and

objectively addressed by the selected models as evident in Figures 6. 1 through 6.4.
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Figure 6.1 Graphical Comparison of Rated and Predicted )PSE Values
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Figure 6.2 Graphical Comparison of Rated and Predicted )PSE Values

. .. 

Comparison of del~PSE) Values 
FDBIT Pavements : 1997 Data 

. .. 

Project No~ 

m Rated Deere ase DI Classical Regression Values 



66

Figure 6.3 Graphical Comparison of Rated and Predicted )PSE Values
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Figure 6.4 Graphical Comparison of Rated and Predicted )PSE Values
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6.2 Range of the Independent Variables

Like all other regression equations, there is a  range of each independent variable for

which the selected models are expected to predict the dependent variable with sufficient accuracy.

The prediction interval  band will be wider  outside that range, and it is statistically inaccurate to

use the model in those cases. The suggested ranges of the independent variables  of the selected

models are:

1. Age since last rehabilitation action: (1 to 18 years),

2. AC layer thickness:  (4 to 30 inches),

3. PSE rating at the base year:  (2 to 10),

4. Decrease in structural number )SN: (0.001 to 2.5),  and

5. Distress level due to transverse cracking:  (1 to 3)

6.3 Paired  t-Test Results

Paired t-tests were performed to determine whether the data from two different sources

have the same mean or in other words whether they are statistically similar.  Rated decrease in the

PSE values were compared with the predicted decrease derived from both classical and Bayesian

regression.  The null hypothesis was:

H0 : :1 =   :2 (or the two sets of data have the equal means)

which was tested against the alternate hypothesis:

Ha : :1 … :2  ( or the two sets of data are significantly different)

The results of the t-tests are tabulated in Table 6.1.  The results indicate that for all

regression models for  both FDBIT and PDBIT pavements the absolute t-value was less than the

critical value of t, which implies that the null hypothesis was accepted in all cases. In other words,
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Table 6.1 Results of Paired t-Test

PAVEMENT TYPE
RESULTS OF PAIRED t-TEST

BAYESIAN CLASSICAL

FDBIT

t crit (two tail) =  2.079 t crit (two tail) =  2.079

t =  -1.46 t =  -1.89

sum of sq. er r.  =  16.74 sum of sq. er r.  =  16.87

PDBIT

t crit (two tail) =  2.015 t crit (two tail) =  2.015

t =  -1.39 t =  -1.93

sum of sq. er r.  =  7.78 sum of sq. er r.  =  12.41

there was no significant difference between the two sets of data. From the sum of squared errors,

it can be concluded that for the FDBIT pavements the Bayesian and classical regression models

yield similar results, while for the PDBIT pavements,  the Bayesian regression models appear to

be more accurate.
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7.0  SUMMARY

7.1 Conclusions

The following conclusions can be drawn based on the results of this study:

1. There were no significant differences among the means of the response variables, first

sensor deflection (d1), subgrade resilient modulus  (Mr), and effective pavement modulus

(Ep), for the years 1993,  1994, and 1995.  However,  significant differences were observed

between the first sensor deflection values in 1996 and 1993 for both FDBIT and PDBIT

pavements. Therefore,  FWD tests up to a 3-year interval at the network level would yield

statistically similar pavement responses and layer properties.  

2. At the network level, FWD tests on more than 20% of network mileage will not

significantly increase the precision of the mean first sensor deflection value.  Therefore,

at the network level, FWD tests on 20% of the mileage appear to be a valid statistical

choice and could be selected as a reasonable sample size in structural evaluation of asphalt

pavements. For KDOT, it would translate into approximately 2,200 lane-miles of testing

over three years or  approximately 750 lane-miles each year.  The average percentage of

error  for seven,  five,  and three FWD tests per mile does not vary significantly.

Therefore,  three tests per mile can be taken as the minimum test frequency at the network

level. This testing would be necessary for network level structural evaluation of the KDOT

pavements and also for using/updating the models developed in this study. The decrease

in the structural number values obtained from the models developed in this study was

about 50% higher than the KDOT design assumption.

3. PSE rating is a very important attribute in the project prioritization process of KDOT and
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the current PSE rating system has discrepancies.  The classical regression models proposed

in this study predict the PSE values by taking into account the FWD data, age, thickness,

and distress level of pavements and hence, is representative of the actual structural

condition of the pavement. The proposed models very closely approximate the present PSE

ratings obtained at the district level.

The following conclusion was drawn by Chowdhury (1998) in his study of the Bayesian regression

methodology: 

1. The models obtained from the classical and Bayesian regression are very similar in form

and they yield statistically similar results when tested on a different set of  pavements.

Both the classical and the Bayesian regression models appear to be statistically sound from

the view point of predicting capability and model utility since they pass the individual

statistical tests.  Although very similar in form,  the Bayesian regression models yielded

slightly better results dur ing testing.

7.2 Recommendations

1. FWD tests are recommended to be performed at 3-year intervals at the network level since

there is no significant difference in pavement responses during those years. Three tests per

mile is the minimum recommended test interval required for network level structural

evaluation and also for using/updating the models developed in this study.  

2. The PSE values obtained by the proposed models are recommended to be used as

“suggested PSE values” along with the KDOT' s recommended maximum and minimum

PSE values currently in use.

The following recommendations were made by Chowdhury (1998):

1.. The Bayesian regression models perform slightly better than the Classical regression
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models when tested on a different set of pavements and are,  therefore,  recommended for

use for predicting )PSE values.

2. The Bayesian regression is a continuous process of updating the existing “par tial state of

knowledge” (Kaweski et al. 1997) . As the existing database is enr iched with more data,

the Bayesian regression will  result in a posterior with an even smaller confidence interval.

Hence, it is highly recommended that the existing models be updated every third year with

more recent data.



73

REFERENCES

1. AASHTO, Guide for Design of Pavement Structures, American Association of State

Highway and Transportation Officials, Washington D.C.,  1986.

2. AASHTO, Guide for Design of Pavement Structures, American Association of State

Highway and Transportation Officials, Washington D.C.,  1993.

3. Chowdhury, T.,  Bayesian Regression Methodology for Network Level Pavement Project

Rating, M.S.  Thesis, Department of Civil Engineering,  Kansas State University,

Manhattan, 1998.

4. Clark, N.,  Miscellaneous Personal Notes on PSE, Topeka, Kansas, 1989.

5. Comstock, D. G.,   Memo to Jim Jones, P. E. Director,  Division of Operations, KDOT,

Topeka,  August 31, 1992.   

6. Haas, R. ,  R. W. Hudson and J.P.  Zaniewski.,  Modern Pavement Management, Krieger

Publishing Co. , Malabar,  Fl,  1994, pp.  161-165.

7. Hossain,  M. and J. P.  Zaniewski, Variability in Estimation of Structural Capacity of

Existing Pavements from Falling Weight Deflectometer Data.  Transportation Research

Record 1355, TRB, Washington,  D.C., 1992,  pp. 17-26.

8. Kajner, L., M. Kurlanda, and G. Sparks, Development of Bayesian Regression  Model to

Predict Hot-Mix Asphalt Concrete Overlay Roughness, Transportation Research Record

1539, TRB, Washington,  D.C., 1992,  pp. 125-131.

9. Karan, M.A., R. Haas,  and T.  Walker,  Illustration of Pavement Management: From Data

Inventory  to  Priority Analysis,  Transportation Research Record 814, TRB, Washington,

D.C., 1981.



74

10. Kaweski, D., and M. Nickeson, C-SHRP Bayesian Modeling: A User's Guide, Transportation

Association of Canada, Ottawa,  1997. 

11. KDOT, 1996 Kansas NOS Condition Survey Report; Attachments I & II, Bureau of

Materials and Research, Kansas Department of Transportation, Topeka, August 1996.

12. Koole, R.C. , Overlay Design Based on Falling Weight Deflectometer Measurements,

Transportation Research Record 700, TRB, Washington,  D.C., 1979.

13. Kurlanda, M.H. and L. Kajner, Predicting Roughness Progression of Asphalt Overlays, Joint

C-SHRP/Alberta Bayesian Application, Canadian Strategic Highway Research Program,

Transportation Association of Canada/Alberta Transportation and Utilities, Ottawa, 1995

14. Lytton, R.L., F.L. Robert, and S. Stoffels, Determination of Asphaltic Concrete Pavement

Structural Properties by Nondestructive Testing, Final Report, NCHRP, TRB,  Washington,

D.C. , February, 1990.

15. National Asphalt Pavement Association (NAPA), Focus on Hot Mix Asphalt Technology

(HMAT),  Spring 1998, Vol. 3, Number 1, pp. 5-12.

16. Nesbitt, D. and G. Sparks, Design of Long Term Pavement Monitoring System for the

Canadian Strategic Highway Research  Program, Canadian Strategic Highway Research

Program, Ottawa, 1990.

17. Paterson, W.D.O., Road Deterioration and Maintenance Effects: Models for Planning and

Management, Published for the World Bank, The Johns Hopkins University Press, Maryland

and London, 1987.

18. Ott, R. L., An Introduction to Statistical Methods and Data Analysis, Duxbury Press,

Belmont, CA, 1993.



75

19. Mamlouk, M.S, W.N. Houston, S.L. Houston, and J.P.  Zaniewski, Rational

Characterization of Pavement Structures Using Deflection Analysis, Report No.

FHWA-AZ88-254,  Vol.2,  Arizona Dept.  of Transportation, Phoenix, May 1990.

20. Shahin, M.Y., Pavement Management for Airports, Roads and Parking Lots, Chapman &

Hill, NY, 1994.

21. Way, G.B.,  J.F.  Eisenberg,  and J.P.  Delton,   Arizona' s Pavement Management System,

Phase II: Analysis of Testing Frequency for Pavement Evaluation, Report No.

FHWA/AZ-81/169-1, Ar izona Department of Transportation,  Phoenix,  1981.  



76

APPENDIX A : Typical SAS Code Files, Log Files,  and Output of the

Selected Models for the Prediction of Decrease in Structural

Number
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Statistical Analysis System (SAS) Codes 

Title1 ' FDBIT PAVEMENTS' ;
Title2 ' Prediction of del(SN) from age, thickness and cumulative ESAL' ; 
options ls= 80 ps= 60;
data;
input dsn age th cumESAL;
cards;
0.098 4 16. 5 599087
0.0924 6 13. 9 745738
0.0582 3 13. 8 129687
0.0876 5 9. 8 301154
0.023 1 11. 8 53125
0.1116 6 10. 3 925514
0.1292 6 12. 4 810048
0.1225 7 13. 5 407297

0.204 13 7. 8 965029
0.08 5 19 298817
0.09 6 14. 4 385079
0.13 8 12. 6 889037
0.08 5 14. 7 461194

0.09 6 11. 4 238113
0.099 6 17. 5 394265
0.236 15 14 1782951

0.18 6 15. 6 1326061
0.168 6 18. 8 1722453
0.171 6 17 1636727
0.151 5 14. 1 531323
0.171 5 12. 2 675370
0.14 5 12. 2 675370
0.184 7 11. 9 1126211
0.16 6 15. 6 2135526
0.281 9 19. 4 623234
0.219 10 19. 8 3723550

0.055 2 14. 6 995321
0.19 7 14. 9 2087479
0.131 5 17. 4 2388042
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0.059 2 17. 6 1119591
0.204 7 10. 5 176723

0.49 17 18. 7 4041889
0.09 3 10 227849
0.08 3 12. 3 267089
0.1 3 12. 3 267089
0.09 3 12. 3 365729
0.27 9 19. 1 2013217 
0.39 16 16. 2 3295945
0.44 16 16. 7 1363570
proc anova;
class dsn;
model dsn= age th;
proc reg;
model dsn =  age th cumESAL;
model dsn =  age th cumESAL/noint;
model dsn =  age cumESAL;
model dsn =  age cumESAL/noint;
model dsn =  age th;
model dsn =  age th/noint;
proc stepwise;
model dsn =  age th cumESAL/F B stepwise;
proc rsquare;
model dsn =  age th cumESAL/adjrsq cp rmse;
proc corr;
run;
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                                          The SAS System : Log File                              

NOTE:  Copyright © 1989-1996 by SAS Institute Inc.,  Cary,  NC,  USA. 
NOTE:  SAS (r) Proprietary Software Release 6.12  TS020
      Licensed to KANSAS STATE UNIVERSITY, Site 0003010005.

This message is contained in the SAS news file, and is presented upon
initialization.  Edit the files "news" in the "misc/base"  directory to
display site-specific news and information in the program log.
The command line option "-nonews" will prevent this display.

NOTE: AUTOEXEC processing beginning; file is /usr/ local/lic/sas612/autoexec.sas.

NOTE:  SAS initialization used:
      real time           0.760 seconds
      cpu time            0.533 seconds
      
NOTE:  AUTOEXEC processing completed.
1          
2          Title1 ' FDBIT PAVEMENTS' ;
3          Title2 ' Prediction of del(SN) from age, thickness and cumulative ESAL' ;
4          options ls= 80 ps= 60;
5          data;
6          input dsn age th cumESAL;
7          cards;

NOTE:  SAS went to a new line when INPUT statement reached past the end of a  line.
NOTE:  DATA statement used:
      real time           0.230 seconds
      cpu time            0.113 seconds
      
52         proc anova;
53         class dsn;
54         model dsn= age th;
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NOTE: PROCEDURE ANOVA used:
      real time           0.020 seconds
      cpu time            0.019 seconds
      
55         proc reg;
56         model dsn =  age th cumESAL;
57         model dsn =  age th cumESAL/noint;
58         model dsn =  age cumESAL;
59         model dsn =  age cumESAL/noint;
60         model dsn =  age th;
61         model dsn =  age th/noint;

NOTE:  The PROCEDURE REG printed pages 1-6.
NOTE:  PROCEDURE REG used:
      real time           0.410 seconds
      cpu time            0.141 seconds
      
62         proc stepwise;
63         model dsn =  age th cumESAL/F B stepwise;

NOTE:  The PROCEDURE STEPWISE printed pages 7-10.
NOTE:  PROCEDURE STEPWISE used:
      real time           0.310 seconds
      cpu time            0.082 seconds
      
64         proc rsquare;
65         model dsn =  age th cumESAL/adjrsq cp rmse;

NOTE:  The PROCEDURE RSQUARE printed page 11.
NOTE:  PROCEDURE RSQUARE used:
      real time           0.290 seconds
      cpu time            0.059 seconds
      
66         proc corr;
67         run;

NOTE:  The PROCEDURE CORR printed page 12.
NOTE:  PROCEDURE CORR used:
      real time           0.010 seconds
      cpu time            0.018 seconds
      
NOTE:  The SAS System used:
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      real time           2.110 seconds
      cpu time            1.029 seconds
      NOTE:  SAS Institute Inc.,  SAS Campus Drive, Cary,  NC USA 27513-2414

                              

Output : FDBIT PAVEMENTS                               
         

Model: MODEL6  '   Selected Model

NOTE: No intercept in model. 
Dependent Variable: DSN                                                

                              Analysis of Variance

                                 Sum of         Mean
        Source          DF      Squares       Square      F Value       Prob> F

        Model            2      1.29274      0. 64637      320.035       0. 0001
        Error             37     0.07473      0. 00202
        U Total         39      1.36747

            Root MSE       0.04494     R-square       0.8127
            Dep Mean       0.15758     Adj R-sq       0.8095
            C.V.          28.51995

                              Parameter Estimates

                       Parameter       Standard    T for H0:               
      Variable   DF        Estimate          Error   Parameter= 0    Prob >  | T|

      AGE         1      0.021872     0.00189214        11. 560           0.0001
      TH         1     0.001025     0.00099054         1. 034            0.0176



82

          Forward Selection Procedure for Dependent Variable DSN     

Step 1   Variable AGE Entered       R-square =  0.80739593   C(p) =   7.25384676

                 DF         Sum of Squares      Mean Square          F   Prob> F

 Regression       1             0.32221333       0.32221333     155.10   0.0001
 Error              37             0.07686390        0.00207740
 Total              38             0.39907723

                 Parameter            Standard          Type II
 Variable         Estimate               Error   Sum of Squares          F         Prob> F

 INTERCEP       0.00160524        0. 01449521       0.00002548       0 . 0 1  
0.9124

 AGE               0.02339575         0. 00187856       0.32221333     155.10
0.0001

Bounds on condition number:            1,             1
--------------------------------------------------------------------------------

Step 2   Variable TH Entered        R-square =  0.83423771   C(p) =   3.36524639

                    DF         Sum of Squares      Mean Square          F   Prob> F

 Regression       2             0.33292527       0.16646264      90.59   0.0001
 Error           36             0.06615196       0. 00183755
 Total           38             0.39907723

                 Parameter        Standard          Type II
 Variable         Estimate           Error   Sum of Squares          F          Prob> F

 INTERCEP    -0.07279728      0.03369669       0. 00857622       4.67   0.0375
 AGE            0.02235521      0.00181859       0. 27766797    151.11  0. 0001
 TH              0.00563853      0.00233535       0. 01071194       5.83    0.0210

Bounds on condition number:     1. 059501,     4. 238002
--------------------------------------------------------------------------------
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All variables have been entered into the model.

     Summary of Forward Selection Procedure for Dependent Variable DSN     

           Variable   Number   Partial     Model
 Step    Entered        In      R**2      R**2        C(p)           F              Prob> F

    1       AGE            1    0.8074    0.8074      7. 2538    155.1039   0.0001
    2       TH               2    0.0268    0.8342      3. 3652      5.8295   0.0210
    3      CUMESAL   3    0.0062    0.8405      4. 0000      1.3652   0.2505

                               

                                                    
         Backward Elimination Procedure for Dependent Variable DSN     

Step 0    All Variables Entered     R-square =  0.84046086   C(p) =   4.00000000

                 DF         Sum of Squares      Mean Square          F   Prob> F

 Regression       3             0.33540879       0.11180293      61. 46   0.0001
 Error           35             0.06366844       0.00181910
 Total           38             0.39907723

                 Parameter        Standard          Type II
 Variable         Estimate           Error   Sum of Squares          F   Prob> F

 INTERCEP      -0.05017719      0. 03871490       0.00305571       1. 68   0.2034
 AGE              0.02062992      0. 00233545        0.14194129        78. 03   0.0001
 TH             0.00392011      0. 00274992        0.00369669         2. 03   0.1629
 CUMESAL       0. 00000001      0.00000001       0. 00248352       1.37   0.2505

Bounds on condition number:     2. 389366,      16. 9151
--------------------------------------------------------------------------------

Step 1   Variable CUMESAL Removed   R-square =  0.83423771   C(p) =   3.36524639

                 DF         Sum of Squares      Mean Square          F   Prob> F

 Regression       2             0.33292527       0.16646264      90.59   0.0001
 Error               36             0.06615196       0.00183755
Total              38             0.39907723
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                 Parameter        Standard          Type II
 Variable         Estimate           Error   Sum of Squares          F        Prob> F
 INTERCEP      -0.07279728    0. 03369669       0.00857622       4. 67   0.0375
 AGE            0.02235521     0. 00181859       0.27766797     151. 11   0.0001
 TH             0.00563853      0. 00233535       0.01071194       5. 83   0.0210

Bounds on condition number:     1. 059501,     4. 238002
--------------------------------------------------------------------------------

All variables left in the model are significant at the 0.1000 level.

   Summary of Backward Elimination Procedure for Dependent Variable DSN     

         Variable       Number   Partial     Model
 Step    Removed        In      R**2         R**2        C(p)           F   Prob> F

    1    CUMESAL         2    0.0062    0. 8342      3.3652      1. 3652   0.2

 Stepwise Procedure for Dependent Variable DSN     

Step 1   Variable AGE Entered       R-square =  0.80739593   C(p) =   7.25384676

                 DF         Sum of Squares      Mean Square          F   Prob> F

 Regression       1             0.32221333       0.32221333     155.10   0.0001
 Error           37             0.07686390       0. 00207740
 Total           38             0.39907723

                 Parameter        Standard          Type II
 Variable         Estimate           Error   Sum of Squares          F   Prob> F

 INTERCEP       0.00160524      0.01449521       0. 00002548            0.01   0.9124
 AGE            0.02339575      0.0 0187856       0.32221333          155.10  

0.0001

Bounds on condition number:            1,             1
--------------------------------------------------------------------------------

Step 2   Variable TH Entered        R-square =  0.83423771   C(p) =   3.36524639

                 DF         Sum of Squares      Mean Square          F   Prob> F
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 Regression       2             0.33292527       0. 16646264      90.59   0.0001
 Error             36             0.06615196       0.00183755
 Total           38             0.39907723

                 Parameter        Standard          Type II
 Variable         Estimate           Error   Sum of Squares          F     Prob> F

 INTERCEP      -0.07279728      0.03369669       0. 00857622       4.67     0.0375
 AGE                 0.02235521      0.00181859       0. 27766797     151.11  0. 0001
 TH                   0.00563853      0.00233535       0. 01071194       5.83      0. 0210

Bounds on condition number:     1. 059501,     4. 238002
--------------------------------------------------------------------------------

All variables left in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the model.
   

  Summary of Stepwise Procedure for Dependent Variable DSN     

        Variable           Partial    Model
 Step   Entered/ Removed          R**2     R**2      C(p)             F            Prob> F

    1   AGE             1    0.8074   0.8074    7. 2538       155.1039   0.0001
    2   TH                2              0.0268   0.8342    3. 3652       5.8295   0.001

  
Number in    R-square    Adjusted        C(p)           Root  Variables in Model
   Model                  R-square                         MSE   

       1    0.80739593     0. 80219041     7.25385    0. 04557853  AGE 
       1    0.48461521     0. 47068589    78.06610   0. 07455786  CUMESAL 
       1    0.13846268     0. 11517788   154.00569  0. 09639725  TH 
  ------------------------------------------------------------
       2    0.83423771     0. 82502869     3.36525   0. 04286670  AGE TH 
       2    0.83119775    0.82181985     4.03216    0.04325799        AGE CUMESAL 
       2    0.48478711    0.45616418     80.02838  0.07557368         TH CUMESAL 
  --------------------------------------------------------------------
       3    0.84046086    0.82678607     4.00000    0.04265089  AGE TH CUMESAL 
  ------------------------------------------------------------------------
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                              Correlation Analysis
                           
Variable           N        Mean     Std Dev         Sum       Minimum     Maximum

DSN                39     0.15758     0.10248      6. 14550       0.02300      0. 49000
AGE                39      6.66667     3.93589    260. 00000     1.00000     17. 00000
TH                   39     14.42564    3.06497    562. 60000     7.80000     19. 80000
CUMESAL     39     1081320     988399     42171493      53125        4041889

    Pearson Correlation Coefficients /  Prob >  | R|  under Ho:  Rho= 0  

                      DSN               AGE                TH           CUMESAL

DSN               1.00000       0.89855           0. 37211            0.69614
                   0.0               0.0001            0.0197              0. 0001

AGE               0.89855           1.00000           0. 23698           0.64328
                         0.0001            0. 0                   0.1463            0.0001

TH                0.37211           0. 23698           1.00000             0. 55025
                   0.0197            0.1463            0. 0                 0.0003

CUMESAL      0. 69614          0.64328           0. 55025            1.00000
                   0.0001            0. 0001              0.0003              0. 0   



87

APPENDIX B : Typical SAS Code Files, Log Files, and Output of the Selected
Models for the Prediction of Decrease in PSE Values 
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Statistical Analysis System (SAS) Codes 

Title1 ' FDBIT PAVEMENTS' ;
Title2 ' Prediction of del(PSE)' ;
options ls= 80 ps= 60;
data;
input age th cumESAL pse dpse DL1 DL2 DL3;
age1 =  age**1.5;
dsn =  age*0.021872+ th*0.001025;
expdsn =  exp(dsn);
cards;
3 13.8 129687 8 1 0 1 0
5 9.8 301154 7 1 0 0 1
1 11.8 53125 6 0 1 0 0
6 10.3 925514 8 2 0 0 1
6 12.4 810048 7 1 0 1 0

5 19 298817 6 1 1 0 0
6 14.4 385079 6 1 0 0 1
5 14.7 461194 8 2 0 1 0

6 11.4 238113 6 1 0 1 0
6 17.5 394265 9 4 0 0 1

6 15.6 1326061 9 2 0 0 1
6 18.8 1722453 7 2 1 0 0
6 17 1636727 7 2 0 0 1
5 14.1 531323 8 1 0 1 0
5 12.2 675370 8 1 1 0 0
5 12.2 675370 8 1 1 0 0
6 15.6 2135526 9 2 0 0 1
6 18 1722453 9 2 1 0 0

2 14.6 995321 7 1 1 0 0
7 14.9 2087479 8 1 1 0 0
5 17.4 2388042 8 2 0 1 0
2 17.6 1119591 7 1 0 1 0
7 10.5 176723 8 2 0 1 0
 
3 10 227849 6 0 1 0 0
3 12.3 267089 7 0 1 0 0
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3 12.3 267089 7 0 1 0 0
3 12.3 365729 7 0 1 0 0

proc reg;
model dpse =  age1 expdsn th pse DL1 DL2 DL3;
model dpse =  age1 expdsn th pse DL1 DL2 DL3/noint;
model dpse =  age1 dsn pse DL1 DL2 DL3;
model dpse =  age1 dsn pse DL1 DL2 DL3/noint;
model dpse =  age1 dsn th pse DL1 DL2 DL3;
model dpse =  age1 dsn th pse DL1 DL2 DL3/noint;
model dpse =  age1 expdsn pse DL1 DL2 DL3;
model dpse =  age1 expdsn pse DL1 DL2 DL3/noint;
proc stepwise;
model dpse =  age1 expdsn th pse DL1 DL2 DL3/F B stepwise;
proc rsquare;
model dpse =  age1 expdsn th pse DL1 DL2 DL3/adjrsq cp rmse;
proc corr;
run;

The SAS System : Log File       

NOTE:  Copyright © 1989-1996 by SAS Institute Inc.,  Cary,  NC,  USA. 
NOTE:  SAS (r) Proprietary Software Release 6.12  TS020
      Licensed to KANSAS STATE UNIVERSITY, Site 0003010005.

This message is contained in the SAS news file, and is presented upon
initialization.  Edit the files "news" in the "misc/base"  directory to
display site-specific news and information in the program log.
The command line option "-nonews" will prevent this display.

NOTE: AUTOEXEC processing beginning; file is /usr/ local/lic/sas612/autoexec.sas.

NOTE:  SAS initialization used:
      real time           1.290 seconds
      cpu time            0.639 seconds
      
NOTE:  AUTOEXEC processing completed.

1          
2          Title1 ' FDBIT PAVEMENTS' ;
3          Title3 ' Prediction of del(PSE)' ;
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4          options ls= 80 ps= 60;
5          data;
6          input age th cumESAL pse dpse DL1 DL2 DL3;
7          age1 =  age**1.5;
8          dsn =  age*0.021872+ th*0.001025;
9          expdsn =  exp(dsn);
10         cards;
NOTE:  SAS went to a new line when INPUT statement reached past the end of a 
      line.
NOTE: The data set WORK.DATA1 has 27 observations and 11 variables.
NOTE:  DATA statement used:
      real time           0.450 seconds
      cpu time            0.188 seconds
44         proc reg;
45         model dpse =  age1 expdsn th pse DL1 DL2 DL3;
46         model dpse =  age1 expdsn th pse DL1 DL2 DL3/noint;
47         model dpse =  age1 dsn pse DL1 DL2 DL3;
48         model dpse =  age1 dsn pse DL1 DL2 DL3/noint;
49         model dpse =  age1 dsn th pse DL1 DL2 DL3;
50         model dpse =  age1 dsn th pse DL1 DL2 DL3/noint;
51         model dpse =  age1 expdsn pse DL1 DL2 DL3
52         model dpse =  age1 expdsn pse DL1 DL2 DL3/noint;
NOTE:  The PROCEDURE REG printed pages 1-8.
NOTE:  PROCEDURE REG used:
      real time           0.930 seconds
      cpu time            0.258 seconds
53         proc stepwise;
54         model dpse =  age1 expdsn th pse DL1 DL2 DL3/F B stepwise;
NOTE:  27 observations read.
NOTE: 27 observations used in computations.
NOTE:  The PROCEDURE STEPWISE printed pages 9-16.
NOTE:  PROCEDURE STEPWISE used:
      real time           0.340 seconds
      cpu time            0.114 seconds
55         proc rsquare;
56         model dpse =  age1 expdsn th pse DL1 DL2 DL3/adjrsq cp rmse;
NOTE:  The PROCEDURE RSQUARE printed pages 17-19.
NOTE:  PROCEDURE RSQUARE used:
      real time           0.370 seconds
      cpu time            0.103 seconds
      
57         proc corr;
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58         run;
NOTE:  PROCEDURE CORR used:
      real time           0.060 seconds
      cpu time            0.041 seconds
      
59         
NOTE:  The SAS System used:
      real time           3.710 seconds
      cpu time            1.436 seconds
      
NOTE:  SAS Institute Inc.,  SAS Campus Drive, Cary,  NC USA 27513-2414
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Output:  FDBIT PAVEMENTS                        

Model: MODEL2  '   Selected Model

NOTE: No intercept in model. 
Dependent Variable: DPSE                                               

                              Analysis of Variance

                                 Sum of         Mean
        Source          DF      Squares       Square      F Value       Prob> F

        Model            7     59.41349      8. 48764       37.011       0. 0001
        Error            20      4.58651       0. 22933
        U Total         27    64.00000

            Root MSE       0.47888     R-square       0.7835
            Dep Mean       1.25926     Adj R-sq       0.7717
            C.V.          38.02865

                              Parameter Estimates

                       Parameter      Standard    T for H0:               
      Variable  DF      Estimate         Error   Parameter= 0    Prob >  | T|

      AGE1       1      0.216685    0.23914791         0. 906          0.0105
      EXPDSN  1    -20.820483   29. 99936689        -0.694          0.0512
      TH         1      0.138074    0.04958408         2. 785          0.0114
      PSE        1      0.328737    0.10999755         2. 989          0.0073
      DL1        1     17.655164   30.62681612        0. 576          0.0875
      DL2        1     18.064029   30.63639956        0. 590          0.0975
      DL3        1     18.381956   30.63624915        0. 600          0.0885
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           R-square  Adjusted      C(p)        Root     Variables in Model
 In               R-square                 MSE  

       1  0.4412660 0.4189166   28. 6161   0.6880954 EXPDSN 
       1  0.4242109 0.4011794   30. 1917   0.6985184  PSE 
       1  0.4063750 0.3826300   31. 8394   0.7092547 AGE1 
       1  0.2644231 0.2350000   44. 9529   0.7895146 DL1 
       1  0.2509777 0.2210168   46. 1950   0.7966976 TH 
       1  0.2447552 0.2145455   46. 7699   0.8000000 DL3 
       1  0.0071885 -.0325239   68. 7164   0.9172327 DL2 
  ---------------------------------------------------
       2  0.6033276 0.5702715   15. 6448 0.5917340 EXPDSN PSE 
       2  0.5872546 0.5528591   17. 1296 0.6036034 AGE1 PSE 
       2  0.5638447 0.5274984   19. 2922 0.6204847 AGE1 TH 
       2  0.5600446 0.5233817   19. 6433 0.6231819 EXPDSN TH 
       2  0.5518015 0.5144516   20. 4048 0.6289929 PSE DL1 
       2  0.5462266 0.5084121   20. 9198 0.6328926 TH PSE 
       2  0.5395534 0.5011828   21. 5363 0.6375293 PSE DL3 
       2  0.5223561 0.4825525   23. 1250 0.6493257 EXPDSN DL1 
       2  0.5062316 0.4650842   24. 6146 0.6601949 EXPDSN DL3 
       2  0.5056879 0.4644952   24. 6648 0.6605583 TH DL1 
       2  0.4930660 0.4508215   25. 8308 0.6689386 AGE1 DL1 
       2  0.4815786 0.4383768   26. 8920 0.6764754 AGE1 EXPDSN 
       2  0.4766080 0.4329920   27. 3512 0.6797106 AGE1 DL3 
       2  0.4732349 0.4293378   27. 6628 0.6818974 TH DL3 
       2  0.4451075 0.3988665  30. 2612 0.6998661 EXPDSN DL2 
       2  0.4278426 0.3801628   31. 8562 0.7106705 PSE DL2 
       2  0.4103105 0.3611697   33. 4758 0.7214765 AGE1 DL2 
       2  0.3332605 0.2776989   40. 5937 0.7671647 DL1 DL3 
       2  0.3332605 0.2776989   40. 5937 0.7671647 DL2 DL3 
       2  0.3332605 0.2776989   40. 5937 0.7671647 DL1 DL2 
       2  0.2604255 0.1987942   47. 3223 0.8079816 TH DL2 
  ------------------------------------------------------
       3  0.6887634 0.6481673    9. 7522 0.5354236 AGE1 TH PSE 
       3  0.6866526 0.6457812    9. 9472 0.5372362 TH PSE DL1 
       3  0.6837208 0.6424670   10. 2180 0.5397437 EXPDSN TH PSE 
       3  0.6657695 0.6221742   11. 8764 0.5548496 TH PSE DL3 
       3  0.6630709 0.6191236   12. 1257 0.5570850 AGE1 TH DL1 
       3  0.6609352 0.6167093   12. 3230 0.5588478 EXPDSN PSE DL1 
       3  0.6593062 0.6148678   12. 4735 0.5601887 EXPDSN TH DL1 
       3  0.6494018 0.6036716   13. 3884 0.5682731 EXPDSN PSE DL3 
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       3  0.6469807 0.6009347   13. 6121 0.5702318 AGE1 PSE DL1 
       3  0.6389619 0.5918700   14. 3529 0.5766718 AGE1 TH DL3 
       3  0.6357582 0.5882484   14. 6488 0.5792248 EXPDSN TH DL3 
       3  0.6354413 0.5878901   14. 6781 0.5794767 AGE1 PSE DL3 
       3  0.6212076 0.5717998   15. 9930 0.5906808 AGE1 EXPDSN PSE 
       3  0.6060122 0.5546225   17. 3968 0.6024120 EXPDSN PSE DL2 
       3  0.5899411 0.5364551   18. 8814 0.6145757 AGE1 PSE DL2 
       3  0.5868383 0.5329477   19. 1681 0.6168964 PSE DL1 DL2 
       3  0.5868383 0.5329477   19. 1681 0.6168964 PSE DL2 DL3 
       3  0.5868383 0.5329477   19. 1681 0.6168964 PSE DL1 DL3 
       3  0.5694920 0.5133388   20. 7705 0.6297132 AGE1 TH DL2 
       3  0.5679853 0.5116355   20. 9097 0.6308142 AGE1 EXPDSN DL
       3  0.5655092 0.5088365   21. 1385 0.6326194 EXPDSN TH DL2 
       3  0.5642544 0.5074180   21. 2544 0.6335323 AGE1 EXPDSN TH 
       3  0.5637505 0.5068484   21. 3009 0.6338984 TH DL2 DL3 
       3  0.5637505 0.5068484   21. 3009 0.6338984 TH DL1 DL3 
       3  0.5637505 0.5068484   21. 3009 0.6338984 TH DL1 DL2 
       3  0.5515024 0.4930028   22. 4324 0.6427355 TH PSE DL2 
       3  0.5514541 0.4929481   22. 4369 0.6427701 AGE1 EXPDSN DL3 
       3  0.5426597 0.4830066   23. 2493 0.6490407 EXPDSN DL1 DL2 
       3  0.5426597 0.4830066   23. 2493 0.6490407 EXPDSN DL1 DL3 
       3  0.5426597 0.4830066   23. 2493 0.6490407 EXPDSN DL2 DL3 
       3  0.5153431 0.4521270   25. 7728 0.6681430 AGE1 DL2 DL3 
       3  0.5153431 0.4521270   25. 7728 0.6681430 AGE1 DL1 DL3 
       3  0.5153431 0.4521270   25. 7728 0.6681430 AGE1 DL1 DL2 
       3  0.4855279 0.4184228   28. 5272 0.6883878 AGE1 EXPDSN DL2 
  ---------------------------------------------------------------
       4  0.7615447 0.7181892    5. 0286 0.4791906 AGE1 TH PSE DL1 
       4  0.7573542 0.7132368    5. 4157 0.4833828 EXPDSN TH PSE DL1 
       4  0.7436757 0.6970713    6. 6794 0.4968207 AGE1 TH PSE DL3 
       4  0.7397534 0.6924359    7. 0417 0.5006074 EXPDSN TH PSE DL3 
       4  0.7206141 0.6698167    8. 8098 0.5186890 TH PSE DL1 DL2 
       4  0.7206141 0.6698167    8. 8098 0.5186890 TH PSE DL1 DL3 
       4  0.7206141 0.6698167    8. 8098 0.5186890 TH PSE DL2 DL3 
       4  0.6928186 0.6369674   11. 3776 0.5438790 AGE1 TH PSE DL2 
       4  0.6925526 0.6366530   11. 4021 0.5441144 AGE1 EXPDSN TH PSE 
       4  0.6876838 0.6308991   11. 8519 0.5484058 EXPDSN TH PSE DL2 
       4  0.6853437 0.6281335   12. 0681 0.5504565 AGE1 TH DL1 DL3 
       4  0.6853437 0.6281335   12. 0681 0.5504565 AGE1 TH DL2 DL3 
       4  0.6853437 0.6281335   12. 0681 0.5504565 AGE1 TH DL1 DL2 
       4  0.6833599 0.6257889   12. 2514 0.5521890 AGE1 EXPDSN PSE DL1 
       4  0.6820114 0.6241953   12. 3759 0.5533636 EXPDSN TH DL1 DL2 
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       4  0.6820114 0.6241953   12. 3759 0.5533636 EXPDSN TH DL1 DL3 
       4  0.6820114 0.6241953   12. 3759 0.5533636 EXPDSN TH DL2 DL3 
       4  0.6756293 0.6166528   12. 9655 0.5588890 EXPDSN PSE DL1 DL2 
       4  0.6756293 0.6166528   12. 9655 0.5588890 EXPDSN PSE DL1 DL3 
       4  0.6756293 0.6166528   12. 9655 0.5588890 EXPDSN PSE DL2 DL3 
       4  0.6712764 0.6115085   13. 3676 0.5626266 AGE1 EXPDSN PSE DL3 
       4  0.6645175 0.6035207   13. 9920 0.5683812 AGE1 EXPDSN TH DL1 
       4  0.6625829 0.6012343   14. 1708 0.5700177 AGE1 PSE DL2 DL3 
       4  0.6625829 0.6012343   14. 1708 0.5700177 AGE1 PSE DL1 DL2 
       4  0.6625829 0.6012343   14. 1708 0.5700177 AGE1 PSE DL1 DL3 
       4  0.6397344 0.5742316   16. 2815 0.5890012 AGE1 EXPDSN TH DL3 
       4  0.6240152 0.5556544   17. 7337 0.6017137 AGE1 EXPDSN PSE DL2 
       4  0.5901095 0.5155840   20. 8659 0.6282590 AGE1 EXPDSN DL1 DL2 
       4  0.5901095 0.5155840   20. 8659 0.6282590 AGE1 EXPDSN DL1 DL3 
       4  0.5901095 0.5155840   20. 8659 0.6282590 AGE1 EXPDSN DL2 DL3 
       4  0.5700067 0.4918261   22. 7230 0.6434809 AGE1 EXPDSN TH DL2 
  ------------------------------------------------------------------
       5  0.7782900 0.7255019    5. 4817 0.4729325 AGE1 TH PSE DL1 DL2 
       5  0.7782900 0.7255019    5. 4817 0.4729325 AGE1 TH PSE DL1 DL3 
       5  0.7782900 0.7255019    5. 4817 0.4729325 AGE1 TH PSE DL2 DL3 
       5  0.7746173 0.7209548    5. 8210 0.4768335 EXPDSN TH PSE DL1 DL2 
       5  0.7746173  0.7209548   5. 8210 0.4768335 EXPDSN TH PSE DL1 DL3 
       5  0.7746173 0.7209548    5. 8210 0.4768335 EXPDSN TH PSE DL2 DL3 
       5  0.7668402 0.7113259    6. 5394 0.4849906 AGE1 EXPDSN TH PSE DL1 
       5  0.7478856 0.6878583    8. 2905 0.5043190 AGE1 EXPDSN TH PSE DL3 
       5  0.6995658 0.6280338   12. 7543 0.5505303 AGE1 EXPDSN PSE DL1 DL2
       5  0.6995658 0.6280338   12. 7543 0.5505303 AGE1 EXPDSN PSE DL1 DL3
       5  0.6995658 0.6280338   12. 7543 0.5505303 AGE1 EXPDSN PSE DL2 DL3
       5  0.6968404 0.6246595   13. 0060 0.5530217 AGE1 EXPDSN TH PSE DL2
       5  0.6868211 0.6122547   13. 9316 0.5620859 AGE1 EXPDSN TH DL2 DL3
       5  0.6868211 0.6122547   13. 9316 0.5620859 AGE1 EXPDSN TH DL1 DL3
       5  0.6868211 0.6122547   13. 9316 0.5620859 AGE1 EXPDSN TH DL1 DL2
  ----------------------------------------------------------------------
       6  0.7835040 0.7185553    7. 0000 0.4788793  AGE1 EXPDSN TH PSE DL2 DL3 
       6  0.7835040 0.7185553    7. 0000 0.4788793 AGE1 EXPDSN TH PSE DL1 DL3 
       6  0.7835040 0.7185553    7. 0000 0.4788793 AGE1 EXPDSN TH PSE DL1 DL2 
  --------------------------------------------------------------------------
NOTE:  Models of not full rank are not included
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Correlation Analysis
 Simple Statistics

 
Variable                 Mean     Std Dev         Sum     Minimum     Maximum

AGE                      4.77778      1.64862   129.00000     1.00000        7.00000
TH                        14.09259     2. 81109   380.50000     9.80000        19. 00000
CUMESAL           826563        696944    22317191       53125          2388042
PSE                       7.44444      0.97402   201.00000     6.00000        9.00000
DPSE                    1.25926       0.90267    34.00000          0              4.00000
DL1                       0.44444      0.50637    12.00000          0                1. 00000
DL2                       0.29630      0.46532    8.00000            0              1.00000
DL3                       0.25926      0.44658     7.00000           0              1.00000
AGE1                   10.92259     5.00700   294.90990      1. 00000         18.52026
DSN                      0.11894      0.03667     3.21150     0.03397        0. 16838
EXPDSN               1.12703      0.04078    30.42982     1.03455        1. 18338

Pearson's Correlation Coefficients : FDBIT Pavements

Age Th C.ESAL PSE DSN Age1 EXPDSN DPSE

Age 1.00 0.18 0.65 0.42 0.61 0.99 0.42 0.35

Th - 1.00 0.51 0.25 0.38 0.17 0.25 0.51

C.ESAL - - 1.00 0.45 0.69 0.60 0.55 0.55

PSE - - - 1.00 0.43 0.42 0.28 0.65

DSN - - - - 1.00 0.58 0.99 0.49

Age1 - - - - - 1.00 0.43 0.68

EXPDSN - - - - - - 1.00 0.61

DPSE - - - - - - - 1.00
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